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ABSTRACT

This dissertation investigates the use of multivariate adaptive regression splines (MARS),

due to Friedman, for nonlinear regression modeling and analysis of time series systems.

MARS can be conceptualized as a generalization of recursive partitioning that uses spline

fitting in lieu of other simple fitting functions. MARS is a computationally intensive method-

ology that fits a nonparametric regression model in the form of an expansion in product

spline basis functions of predictor variables chosen during a forward and backward recur-

sive partitioning strategy. The MARS algorithm produces continuous nonlinear regression

models for high-dimensional data using a combination of predictor variable interactions and

partitions of the predictor variable space.

By letting the predictor variables in the MARS algorithm be lagged values of a time

series system, one obtains a univariate (ASTAR) or semi-multivariate (SMASTAR) adaptive

spline threshold autoregressive model for nonlinear autoregressive threshold modeling and

analysis of time series, thereby extending the threshold autoregression (TAR) time series

methodology developed by Tong. The models seem well suited for taking into account

the complex interactions among multivariate, cross-correlated, lagged predictor variables

of a time series system. A significant feature of this time series application of MARS is

its ability to produce models with limit cycles when modeling time series data that exhibit

periodic behavior. In a physical context, limit cycles represent a stationary state of sustained

oscillations.

A difficulty faced during regression modeling is the problem of model selection, i.e.,

choosing the appropriate model dimension and model predictor variables. Currently, a mod-

ified form of generalized cross validation (GCV*), first suggested by Craven and Wahba,

is used for model selection within the MARS algorithm. However, one question that im-

mediately develops is whether GCV* is the 'best' criterion for model selection when using

serially and cross-correlated time series data. Using MSE as a measure of performance,

simulations show that other model selection criteria, in particular the Schwarz-Rissanen

(SC) criterion, can improve model selection over GCV*.
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I. INTRODUCTION

Most research in, and applications of, time series modeling and analysis has been con-

cerned with linear models. This is due to the maturity of the theory for linear time series,

and the numerous studies and statistical packages that exist to facilitate the use of linear

time series models. However, more frequently than not, nonlinear time dependent systems

abound that are not adequately handled by linear models. For these systems we need to

consider general classes of nonlinear models that readily adapt to the precise form of a

nonlinear system of interest. This dissertation is an investigation of the use of multivariate

adaptive regression splines for the systematic autoregressive modeling and analysis of non-

linear univariate and semi-multivariate time series systems. This chapter provides a brief

introduction to regression modeling and multivariate adaptive regression spline modeling

(MARS), briefly discusses the application of MARS to time series systems, identifies the

contributions of this dissertation, and gives an outline of the chapters that follow.

A. BACKGROUND

Regression modeling is a popular statistical approach that serves as a basis for studying

a system of interest. Regression modeling is used to develop a mathematical model of

the relationships that exist between the dependent (output) variable and the independent

(explanatory) variables of the system. Classical methods for developing the functional form

of the regression model are based on previous knowledge of the system and on considerations

such as smoothness and continuity of the output variable as a function of the explanatory

(predictor) variables.

To provide a framework for a regression modeling methodology let y represent a

single response variable that depends on a vector of p predictor variables z, where

= (z, -, zv,... , zp). Assume there are given N samples of y and z, namely {syi, 2z} J,

and that y is described by the (additive noise) regression model,

Y = + f (1)

1 I! ! I l



over some domain D C RP, which contains the data. The function f(z) reflects the true

but unknown relationship between y and z. The random additive error variable c, which

is assumed to have mean zero and variance U2,, reflects the dependence of y on quantities

other than z. The goal of a regression modeling methodology is to formulate a function

1(z) that is a reasonable approximation of f(z) over the domain D.

Both parametric and nonparametric regression modeling methodologies provide use-

fuil methods for developing regression models. If the correct parametric form of f(z) is

known, then we can use global parametric regression modeling to estimate a finite number

of unknown coefficients. Draper and Smith (1966) discuss classical parametric regression

modeling and provide extensive discussion of parametric regression modeling techniques.

The most frequently used and well-known form of parametric regression modeling is

ordinary least squares regression, which estimates f(z) from (1) using

= 1(z) = Hy (2)

where H is the well known projection or 'hat' matrix H = X(X'X)-'X'. Parametric re-

gression models require less data than nonparametric regression models and their properties

are rapidly computed. However, the proper use of parametric regression modeling requires

knowledge of the approximate parametric form of the underlying function f(z), which can

become increasing difficult as the dimension of the predictor variable space p becomes large.

In this dissertation the approach is focused towards nonparametric regression modeling

(see, e.g., Eubank, 1988). It is only assumed that 1(z) belongs to a general collection

of functions and the data is used to determine the final model form and its associated

coefficients i.e., the form of f(z) is not rigidly specified. The most common nonparametric

regression methodologies use local parametric (linear smoothing) approximations, or use

spline smoothing approximations, to estimate the underlying function f(z) (Thisted, 1988).

One difficulty with applying existing nonparametric regression modeling methodolo-

gies to problems of dimension greater than two has been called the curse-of-dimensionality

(Bellman, 1961). The curse-of-dimensionality describes the need for an exponential increase

in sample size N for a linear increase in p, in order to densely populate higher-dimensional

predictor variable spaces. In effect, the curse-of-dimensionality limits the practical ap-
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plication of some nonparametric regression modeling methodologies to problems of low

dimension.

Linear smoothing is a form of nonparametric regression that estimates f(z) from (1)

with

S Y (3)

where S is an n by n matrix. As in ordinary least squares regression (2), the matrix S

depends only on the X matrix. However, in linear smoothing the S matrix can be some

nonlinear form of the X matrix (Thisted, 1988). In general, linear smoothers compute

the estimate of f(z) at z using some localized neighborhood of data around z. Some

common linear smoothers include running means, kernel smoothing and running lines (see,

e.g., Altman, 1987 and Cleveland, 1979). Although a nonparametric regression model using

linear smoothing is rapidly computed, the estimate of f(z) can be poor at the extremes of

the predictor variable space due to the endpoint behavior of the linear smoother. In addition,

the curse-of-dimensionality limits the practical application of some linear smoothers to a

low-dimensional setting, i.e., p is small. Altman (1987) found that some linear smoothers

systematically overestimate (undersmooth) or underestimate (oversmooth) the estimate for

f(z) when serial correlation is present in the data. Serial correlation in the data can even

plague more sophisticated nonlinear smoothers, such as SUPERSMOOTHER (Fiedman

1984).

Spline smoothing approximations are a special form of linear smoothing (3) which

are particularly attractive as nonparametric regression models because they arise as the

solutions to optimization problems closely related to least squares and maximum likelihood

(Thisted, 1988). Silverman (1985) views spline smoothing approximations as a span between

parametric and nonparametric regression methodologies. An excellent survey and discussion

of splines in statistics is provided in papers by Wegman and Wright (1983) and Silverman

(1985).

Roughness penalty methods and regression splines are two forms of spline smoothing.

Spline smoothing approximations that use roughness penalty methods to estimate f(m) are

very robust regression modeling methodologies. However, roughness penalty methods are
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hampered by the curse-of-dimensionality and the large number of coefficients that must

be computed for large p. Regression splines seek to overcome the difficulties of roughness

penalty methods but still require a methodology for selecting the number and location of

the spline knots for the regression model.

Multivariate Adaptive Regression Splines (MARS) (Friedman, 1988) is a new method

of flexible nonparametric regression spline modeling that appears to be an improvement

over existing regression modeling methodologies when using moderate sample sizes N and

predictor spaces with dimension p > 2. In the regression context, MARS can be conceptu-

alized as a generalization of a recursive partitioning strategy (Morgan and Sonquist, 1963;

Breiman et al., 1984) that uses regression splines in lieu of other simple fitting functions.

Given a set of predictor variables, MARS fits a model in the form of an expansion in product

spline basis functions of predictors chosen during a forward and backward recursive parti-

tioning strategy. Although MARS is a computationally intensive regression methodology, it

provides a systematic (automatic) approach to regression model building that can produce

continuous models for high-dimensional data with multiple partitions and predictor variable

interactions.

Although MARS is capable of regression modeling in low-dimensional environments,

i.e., those for which p _< 2, its primary advantages exist in higher-dimensional predic-

tor spaces where, as discussed above, many regression methodologies are plagued by the

curse-of-dimensionality. The curse-of-dimensionality cannot be overcome if the data used

in constructing f(z) exhibits no special structure (Friedman, 1988). However, in general,

this is not the case. Thus, MARS attempts to overcome the curse-of-dimensionality by

exploiting the localized low-dimensional structure of the data (where it exists) used in

constructing i(z). Note that in this dissertation the approach taken to explain and apply

MARS is geometric in nature; the focus is on the iterative formation of overlapping subre-

gions in the domain D of the predictor variables. Each subregion of the domain is associated

with a product spline basis function. MARS approximates the unknown function f(Z) using

the set of product spline basis functions associated with the overlapping subregions of the

domain.

What about the use of MARS in a time series setting? By letting the predictor variables

in the MARS algorithm for the rth value in the time series {X,) be its lagged values, i.e.,
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X,-1 , X-, ... , X,p, one obtains an adaptive spline threshold autoregressive (ASTAR)

time series model. In the multivariate time series setting, i.e., where the predictor variables

are not only the lagged values of the object time series but also the lagged values of other

cross-correlated time series, the application of MARS results in a semi-multivariate ASTAR

(SMASTAR) time series model. Thus the MARS methodology gives a new method for

nonlinear modeling of univariate and multivariate time series and a systematic way of fitting

the model to the data. The ASTAR and SMASTAR methodologies extend the threshold

autoregression (TAR) methodology developed by Tong (1990) and seem well suited for

taking into account the complex interactions among the univariate or multivariate, lagged

predictor variables of a time series system.

A significant feature of this application of MARS is its ability to produce nonlinear

models with limit cycles when modeling time series data that exhibit periodic behavior.

In a physical context, limit cycles represent a stationary state of sustained oscillations, a

satisfying behavior for any model of a time series with periodic behavior. Many time series

such as the Canadian Lynx data, Wolf sunspot data, and many riverflow data sets exhibit

'periodic' behavior. The Lynx data and Wolf sunspot data are quasi-periodic. However,

riverfiow data is frequently tied to a fixed yearly oscillation that can dominate the structure

of the time series.

B. CONTRIBUTIONS OF THIS DISSERTATION

Much as Yule's (1927) application of least squares regression to linear time series

motivated the development of linear autoregressive (AR) modeling, the application of mul-

tivariate adaptive regression splines (MARS) to time series systems provides a new and

innovative approach for nonlinear time series modeling. The application of MARS to time

series systems is a major contribution of this thesis. The systematic (automatic) approach

for model building provided by MARS gives an interpretable representation for a nonlinear

time series modeling methodology called adaptive spline threshold autoregression (ASTAR)

for univariate time series systems and semi-multivariate ASTAR (SMASTAR) for multivari-

ate time series systems. However, the functional form of an ASTAR or SMASTAR model,

with the combination of different predictor variables and multiple partitions of the predic-

tor variable space, makes their straightforward interpretation and analysis difficult. In this
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regard a graphical and hierarchical representation was developed to permit interpretation

and analysis of ASTAR and SMASTAR models.

The ASTAR and SMASTAR methodologies turn out to be a generalization of, and

extension of, the nonlinear threshold autoregressive (TAR) methodology developed by Tong

(1990). The development of TAR models in the late seventies provided a basis for the 'prac-

tical' modeling and investigation of nonlinear univariate and multivariate time series systems

(Tong, 1980). Univariate and semi-multivariate TAR models are general enough to capture

some non-linear phenomena (such as limit cycles), provide predictive capability, appear to

improve upon linear models when used to model nonlinear systems, and provide a much

wider class of time series models than available previously. However, in general, TAR models

are piecewise, discontinuous, linear autoregressive time series models of disjoint subregions

in the domain of the predictor variables. Also, the ability of the TAR methodology to iden-

tify the complex interactions between cross-correlated lagged predictor variables, especially

in the case of a multivariate time series system, is limited by the threshold selection process.

In contrast, ASTAR and SMASTAR models provide a more general class of nonlinear time

series models that are continuous in the domain of the predictor variables. The systematic

(automatic) approach for developing ASTAR and SMASTAR models seems well suited for

taking into account the complex interactions among the univariate and multivariate lagged

predictor variables of a time series system. When used for prediction, ASTAR and SMAS-

TAR models are a significant improvement over other existing nonlinear models of the time

series investigated in this dissertation.

To facilitate the application of MARS to time series systems, Fortran program sub-

routines were developed. The input programs permit the user to identify and enter the

necessary information for initiating the MARS methodology in a time series setting. The

output programs provide ASTAR and SMASTAR model output in a form that facilitates

model analysis. In addition, various subroutines written in APL are available to permit

graphical and statistical analysis of ASTAR and SMASTAR models using programs such

as IBM's GRAFSTAT.

One difficulty that is often faced during regression modeling is the problem of model

selection i.e., choosing the appropriate model predictor variables and model dimension.

Friedman (1988) uses a modified form of generalized cross validation (GCVO), first suggested
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by Craven and Wahba (1979), for model selection within MARS. However, one question

that immediately develops is whether GCV* is the 'best' criterion for model selection when

using serially and cross-correlated time series data. Other model selection criteria, such

as Akaike's Information Criterion (AIC) (Akaike, 1974), have been suggested for model

development in a standard linear time series setting. Using simulations and mean squared

error (MSE) as a performance measure, it is shown that other model selection criterion, in

particular the SC (Schwarz, 1978; Rissanen, 1987) criterion, are an improvement over the

GCV* criterion when modeling time series with MARS.

C. OUTLINE OF THIS DISSERTATION

Chapter II provides an introduction to the recursive partitioning and regression spline

methodologies that form the foundation for the development of the MARS methodology.

This is followed by the development of the ASTAR time series model that results when the

MARS algorithm is applied to univariate time series. Simulations are used to demonstrate

the ability of ASTAR to detect and model simple linear and nonlinear time series. As

an example of ASTAR modeling in a more difficult setting, the last section of Chapter

II considers the widely studied yearly Wolf sunspot numbers, a nonlinear time series with

periodic behavior. When used for prediction, ASTAR models are a significant improvement

over other existing nonlinear models of the Wolf sunspot numbers. Chapter III discusses the

semi-multivariate time series extension of ASTAR (called SMASTAR for semi-multivariate

adaptive spline threshold autoregression) i.e., the univariate time series to be modeled not

only has its own lagged variables as predictors, but also the lagged variables of other related

time series. This approach seems well suited for taking into account the complex interactions

among multivariate, cross-correlated, lagged predictor variables of a time series system.

Analysis of an Icelandic river using past riverfiow, temperature and precipitation is used as

an example to demonstrate this extension of MARS. The use of this example is predicated

on the fact that riverflow time series are very difficult to model because they are frequently

nonlinear and nonnormal, and also because this Icelandic riverflow was analyzed by Tong

et al. (1985) using semi-multivariate TAR models. Chapter IV explains the development of

Fortran subroutines to permit the application of MARS to univariate and semi-multivariate

time series systems. An example is provided using 12 years of daily sea-surface temperatures,
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a large univariate time series with periodic behavior. Chapter V is a discussion of the

problem of model selection within MARS. Using simulations and mean squared error (MSE)

as a performance measure, it is shown that other model selection criterion, in particular the

SC (Schwarz, 1978; Rissanen, 1987) criterion, are an improvement over the GCV* criterion

used in MARS by Friedman when modeling time series.

D. SUMMARY

MARS is a new nonparametric modeling methodology, due to Friedman, that utilizes

low-order regression spline modeling and a modified recursive partitioning strategy to ex-

ploit the localized low-dimensional behavior of the data used to construct f(m). MARS is

a computationally intensive regression methodology that selects a regression model using

exhaustive search procedures. However, MARS provides a systematic (automatic) regres-

sion methodology for deriving nonlinear threshold models for high-dimensional data that

are naturally continuous in the domain of the predictor variables and can have multiple

partitions and predictor variable interactions.

By letting the predictor variables in MARS be lagged values of a univariate time

series, one obtains an adaptive spline threshold autoregressive (ASTAR) time series model,

which is a new, computationally intensive method for the systematic nonlinear modeling

of a univariate time series system. The MARS methodology is easily extended to the

semi-multivariate nonlinear modeling of a single object time series in a multivariate times

series system (SMASTAR); this approach is well suited to take into account the complex

and possibly nonlinear interactions among cross-correlated, lagged predictor variables of a

multivariate time series system. Also, simulations suggest other model selection criterion,

such as the SC (Schwarz, 1978; Rissanen, 1987) criterion, for use within MARS when

modeling in a time series setting. Fortran programs are available for implementing MARS

in a time series setting; the drivers for the Fortran programs are given in Appendices A,

B, and C.
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II. NONLINEAR MODELING OF UNIVARIATE TIME SERIES

USING MULTIVARIATE ADAPTIVE REGRESSION SPLINES

(MARS)

A. INTRODUCTION

This chapter introduces MARS, due to Friedman (1988), a new methodology for regres-

sion analysis which, when applied to nonlinear time series, extends the nonlinear threshold

autoregression methodology (TAR) developed by Tong (1985). To motivate the develop-

ment of the MARS procedure, Sections B and C of this chapter briefly review recursive

partitioning and regression splines. Section D of this chapter is a discussion of Friedman's

innovations used to develop MARS. An algorithm for implementing MARS is addressed in

Section E of this chapter. The application of MARS to univariate time series for develop-

ing adaptive spline threshold autoregression (ASTAR) models is discussed in Section F of

this chapter. The final part of Section F is an application of MARS to the Wolf sunspot

numbers, an often studied univariate time series with periodic behavior.

The approach taken to explain and apply MARS is geometric in nature, i.e., the

iterative formation of overlapping subregions in the domain D of the predictor variables.

Each one of the domain's subregions, developed using a modification of a forward and

backward recursive partitioning strategy, is associated with a product spline basis function.

MARS approximates the unknown function f(z) (in equation 1) using the set of product

spline basis functions associated with the overlapping subregions of the domain.

A significant feature of ASTAR when modeling time series data with periodic behav-

ior is its ability to produce continuous models for the regression function with underlying

sustained oscillations (limit cycles). An initial analysis of the yearly Wolf sunspot numbers

using ASTAR produced several models with underlying limit cycles. When used for predic-

tion, ASTAR models are a significant improvement over other existing nonlinear models of

the Wolf sunspot numbers.

9



B. RECURSIVE PARTITIONING (RP)

The origin of recursive partitioning regression modeling methodology appears to date

to the development and use of the AID (Automatic Interaction Detection) program by

Morgan and Sonquist in the early 1960's. More recent extensions and contributions were

made by Breiman et al. (1984). In Subsection I recursive partitioning (RP) is explained

using recursive splitting of established subregions. In Subsection 2 recursive partitioning is

then recast equivalently as an expansion in a set of basis functions. The latter explanation

of recursive partitioning may be considered a precursor to MARS.

1. RfP: Recursive Splitting of Established Subregions

Let the response variable V depend in some unknown way on a vector of p predictor

variables z = (X.,... ,zP), that is modeled with (1). Assume there are N samples of y and

, namely }. Let {Rjf I= be a set of S disjoint subregions of D C RP such that
S

D U U Rj. Given the subregions {Rjl=,, recursive partitioning estimates the unknown

function f(z) at z with

f(z)= j(z) for z E Rj, (4)

where the function 1j(z) estimates the true but unknown function f(z) over the Rjth

subregion of D. In recursive partitioning, j,(z) is frequently taken to be the constant

function (Morgan and Sonquist, 1963 and Breiman et al., 1984) although linear functions

have been proposed without much success (Breiman and Meisel, 1976). For the purpose of

explaining MARS, j,(z) is taken to be a constant function,

ij(Z) = ci V X E R , (5)

where each cj is chosen to minimize the jth component of the residual-squared-error

(badness-of-fit),

BOF[fj(z)] = mi E (p, - c)2. (6)

Since the subregions of the domain D are disjoint, each cj will be the sample mean of the

pi's whose {z, 1 E R;.
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In general, the recursive partitioning model is the result of a 2-step procedure that

starts with the single subregion R, = D. The first, or forward, step of the algorithm uses

recursive splitting of established subregions to iteratively produce a large number of disjoint

subregions {Rj,_ 2 , for M > S, where M is chosen by the user. The second, or backward,

step of the algorithm reverses the first step and trims an excess (M - S) subregions from

the model using a criterion that evaluates both the model fit and the number of subregions

in the model. The goal of the 2-step procedure is to use the data to select a good set of

subregions {Rj), 1 together with the constant functions cj that estimate f(z) over each

subregion of the domain.

To facilitate understanding of the recursive partitioning algorithm we examine

the forward-step procedure for an example problem using p = 3 predictor variables, and

M = 5, the maximum number of forward-step subregions. Let v = 1, .. ,p index the

predictor variables and k = 1,..., n, index the ordered sample values of a predictor variable

z, in subregion Rj. For our purposes we use BOF = '71 BOF[hj(z)] as the forward-

step measure of fit for a recursive partitioning model with m subregions, and we restrict the

set of candidate partition points to the actual sample values, xz,k. Note that zv,k represents

the kth serially-ordered sample value of the vth predictor variable, while z, alone denotes

the running values of the vth predictor variable. At the start of the forward-step recursive

partitioning algorithm, R1 is the entire domain D and the single subregion estimate for

f(w) is

1(2) = 1-(2) = c - (7)

The forward-step measure of fit for the single subregion recursive partitioning model is

N

BOFI = - 1)2. (8)
i=1

The initial recursion, m = 2, for the forward-step algorithm selects a partition

point t* that best splits subregion R, into two disjoint sibling subregions. The method for

discovering t° is a straightforward exhaustive search; evaluate every sample value z,,,k (for

v = 1... . ,p;k = 1,... , n) as a candidate partition point to determine which one minimizes

the remaining badness-of-fit for a m = 2 subregion model. For example, let t = z1js identify
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a candidate partition point for predictor variable xi. The area in parent subregion R1 to

the left of t, x, < t, resides in proposed sibling subregion R1,1. The area to the right of t,

t < zi, resides in proposed sibling subregion R1,,.. Given the proposed split of R1 along

t = x1,13, we evaluate the model using BOF, for a m = 2 subregion model, i.e.,

BOF2 = in (p,-c) 2 + mm (y,-c )2. (9)Z 2Elli,a R.

Using the indices v and k, the exhaustive search sequentially evaluates all possible partition

points for each predictor variable in R, (which here is equal to D).

For our example problem, let the partition point t* = X2,25 identify the split of

subregion R1 that minimizes the forward-step fit criterion BOF for a m = 2 subregion

recursive partitioning model. We use X2,25 to create two new disjoint subregions during the

split and elimination of the old parent region, which we now call R 1.. First, the area in

parent subregion R1. to the left of t (i.e., z2 < t*) is assigned to sibling subregion R 2, while

the area to the right of t- (i.e., i S x2) is reconstituted as subregion R 1 . The creation of the

two new disjoint subregions R1 and R2, and the elimination of the old parent subregion RI.,

increase by one the number of disjoint subregions that partition D completing the initial

recursion of the forward-step procedure. Thus, the two-subregion recursive partitioning

estimate of f(a) for our example problem is

f(m) = ci if a E Ri, for j = 1,2 (10)

where (since we are splitting the domain D on only X2's dimension),

{ R if 42 X2,25

R 2 if X2 <32,25.

Note tha the form of the recursive partitioning model (4) did not change during the recur-

sion, but only the number of disjoint subregions that partition D.

The recursions m = 3,..., M = 5 of the forward-step algorithm repeat the first

recursion with one exception. The exhaustive search is now conducted to identify the

best rpit (minimizing BOF) for one and only one of the subregions from the current

m - 1 subregion model. Each recursion's partition point t is selected as before, after
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an evaluation of all potential partition points for each predictor variable in the existing

subregions {Rjl__- I of the model. The recursive splitting continues until the domain D is

partitioned into M = 5 disjoint subregions {1R}5= I . Upon completion of the forward-step

recursive partitioning algorithm, a backward-step algorithm trims excess subregions using a

criterion that evaluates both fit and the number of subregions in the model. (See Friedman

(1988) for a discussion of the backward-step algorithm). Completion of the backward-

step procedure results in the final recursive partitioning model with {Rj}-= 1 subregions

(S<M).

2. RP: An Expansion in a Set of Basis Functions

While the initial approach to understanding recursive partitioning is through

recursive splitting, it is recast now in an equivalent form to provide a reference for explaining

the MARS methodology. The central idea is to formulate the recursive partitioning model

as an additive model of functions from disjoint subregions. Also, we associate the operation

of subregion-splitting with the operation of step-function multiplying. The new approach

approximates the unknown function f(m) at z with an expansion in a set of basis functions

from disjoint subregions {Rj)Si:

S
j(c) cjBj(z), (11)

3=1

where

B,(z) = I[z E Rj],

and I[-] is an indicator function with value 1 if its argument is true and 0 otherwise. The

constant function ci estimates the true, but unknown function, f(z) over the Rith subregion

of D, and Bj(z) is a basis function that indicates membership in the Rjth subregion of D.

We call Bj(z) a basis function because it restricts contributions for f(z) to those values

of z in the R1th subregion of D. The approximation of the unknown function f(z) at z

in (4) and (11) are equivalent: the subregions {Rj&}S= are the same disjoint subregions of

the domain D, and the constant functions {cj}fi are the same constant functions that

estimate f(z) over each subregion.
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During each search for a partition of a subregion R, using an expansion in a

set of basis functions (11), the selection of a candidate partition point creates a particular

functional form for 1(z) that we call g in the following algorithm. Let

H1 1 if 1> 0 (12)
0 otherwise,

be a step function (which returns a value of 1 if q is not negative, and 0 otherwise). Fol-

lowing Friedman (1988), an algorithm to implement the forward-step recursive partitioning

procedure using an expansion in a set of basis functions is:

Recursive Partitioning Algorithm (Forward-Step) (13)

Ri = D, BI(a) = 1 (a)

For each subregion R, m = 2 to M do: (b)

bof =oo, j*=O, v=0, to=O (c)

For each established subregion Rj, j = 1 to m - 1 do: (d)

For each predictor variable z, in R, v = 1 to p do: (e)

For each data value z,,,k in Rj, t = X,,k=l to Z,,,k=n do: (f)

g = ( -j cdBd(W)) + cBi(=)H[t - Z,] + ciBi(x)H[ ,, - t] (g)

bof= BOF,, (h)

if bof < bor then bof - bof ; j" = j; v" = v; to = t end if (i)

end for

end for

end for

R, - {Ri. : (t - x,.) >0) (j)

R 4.. -{ . : (z,. - to) 2o (k)

end for

end

The forward-step recursive partitioning algorithm is initialized with the first sub-

region R 1 equal to the entire domain D (13a). The outer loop (13b) controls the iterative

creation of the subregions {Rnm1A..= 2 . Next, the dummy variables (13c) for the evaluation of
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the fit procedure bofr, region f, predictor variable t*, and partition point t" are initialized

in preparation for identifying the next partition of an established subregion {Ri}'jy. The

three nested inner loops (13d-13f) perform the exhaustive search for the next partition point

by iteratively searching across all established subregions (13d), all predictor variables (13e),

and all values of the predictor variables in the jth subregion (13f). Given the investigation

of a partition point t for a predictor variable z. in subregion R, the function g (13g),

with parameter vector c = (cl, ... , c,..), is the current candidate for a recursive partitioning

model estimate of f() in the mth iteration of the forward-step procedure. The first term

in (13g) includes all subregions except subregion Ri. The last two terms in (13g),

c.Bi(z)H[t - z,,] + cBi(z)H[x. - t],

reflect the proposal to divide the parent subregion Ri into two disjoint sibling subregions

using the step functions H[t - z] and H[zx - t] to identify each z's location with respect to

the partition point t. Next, BOFM (13h) is the forward-step measure of fit that evaluates

the function g with respect to the data. Information for the best yet discovered partition,

predictor variable, and subregion is retained (step 13i) as the search continues for the best

partition of an established subregion {Ri}J. 1 in the mth iteration. Completion of the mth

iteration's search results in the division (and elimination) of the old parent subregion R.

into two disjoint sibling subregions (13j and 13k) based on z,.'s location with respect to

the partition point t*. The iterations continue until the domain D is partitioned into M

disjoint subregions {RJM

Each basis function Bj(z) identifies membership in the Rjth subregion of D and

is the result of the product of step functions whose partition points define the subregion Ri.

For example, let D E * 2 and R5 be a subregion formed from the sequence of step functions

Hizi - t]], HJt* - Z21, HI: 2 - t3] and Hit4 - xi] where {t )4=, is 0,1,0,1 respectively. Then

the basis function B 5(x) is,

Bs(z) = Hizi - 0] x Hi1 - 2] x HJX2 - 01 x H[1 - zi], (14)

which delineates the subregion Rr as a unit square in R2. The basis function Bs(z) = 1 if

0 < z, :_ 1 and 0 < z2 <_ 1, and 0 otherwise.
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In recursive partitioning, the subregions {Ri}= 1 are disjoint. Each data point

z belongs to only one subregion Ri. Therefore, the estimate of f(m) over each subregion

R1 is restricted to the functional form for fj(x), which in this discussion is the constant

function ci. However, as we will address in Section D, MARS has overlapping subregions.

The estimate of f(z) over subregion R may be obtained as a sum of multiple functional

forms.

Recursive partitioning is a very powerful regression modeling methodology that

is rapidly computed, especially if .(m) is a constant function ci. Each forward step of

the algorithm (13) partitions one and only one subregion of the domain on an influential

variable z,.. This procedure increasingly localizes the activity of the predictor variables

with respect to the response variable y. However, there are several drawbacks to using

recursive partitioning as a regression modeling technique:

e Recursive partitioning models have disjoint subregions giving rise to discontinuities

at subregion boundaries. This is disconcerting if we believe f(x) is continuous.

* Recursive partitioning has an innate inability to adequately estimate functions f(z)

that are linear or additive. This is due to the recursive division of established subre-

gions during the forward-step procedure that automatically produces predictor vari-

able interactions, i.e., terms of the form czizx, unless all successive partitions occur

on the same predictor variable.

o The form of the recursive partitioning model (11), which is an additive combination

of functions of predictor variables in disjoint regions, makes estimation of the true

form of the unknown function f(z) difficult for large p.

C. REGRESSION SPLINES

The development of a regression spline model offers another method for explaining

MARS. Silverman (1985) views spline functions as an attractive approach to modeling that

may be thought of as a span between parametric and nonparametric regression methodology.

For simplicity, define a qth-order polynoraial function in the unknown x E D C R, with

coefficients ci as follows:

9

pq W ClZl for z E D. (15)

1=0

The polynomials in (15) are smooth and easy to manipulate. However, global fitting of data

with a polynomial model may require higher-order terms having unacceptable fluctuations.
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This observation leads us to divide the domain D into smaller subregions Ri to permit the

use of (different) polynomial functions of relatively low order within each subregion.

Let [a,b] = D C R1, and let As = {t 1,...,ts-1} denote an ordered partition of [a,b]

into S disjoint subregions a = to < ti < ... < ts-1 < ts = b. Denote each disjoint

subregion by R = [t.i-, ti], for j = ... ,S. Let C9[D] represent the set of all continuous

functions in D whose q - 1 derivatives are also continuous. Using j as a subscript to index

the subregions, we define a spline function qs as a set of S piecewise qth-order polynomial

functions whose function values and first q - 1 derivatives agree at their partition points,

i.e.,

S

aF) = Epqj(z) I[z E Rj], (16)
j=1

with the restriction that ss(z) E Cg[D].

There are several approaches for implementing (Wegman and Wright, 1983) splines

within a regression setting. One approach is to write the regression model (1) as a piecewise

regression spline model,

= 4.(z) + (17)

where e is assumed to have mean zero, variance a,2 and to be independent of q

Moreover, 45 (z) estimates f(z) according to (16).

Given a set of partitions points As, Smith (1979) !-as shown that a different and more

useful regression spline model may be written using plus (+) functions. The plus function

is defined as

fU if u>O
u+ - (18)10 if u<O.

Again, let [a, b] = D C R 1. However, we now let As. = {t 1 ,... ,ts-1} define an ordered

partition of [a, b] into S overlapping subregions and denote the S overlapping subregions as

Ri = [ti. 1, ts], for j = 1,..., S. Let I index the order of the polynomial terms in each

subregion of the domain and cp denote the coefficient for the lth term of the polynomial
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function in the (j + 1)st subregion of a spline model. The use of plus functions results in a

truncated regression spline model functionally equivalent to the piecewise regression spline

model (16) as follows:

q S-I

y = cc' + ci,[(x- tj)+] + , q 2! 1, (19)
1=0 j=1

where c is assumed to have mean zero, variance a, and is independent of 4 s(z), and q is

assumed to be greater than or equal to one. Since the partition points of the set As. are

ordered, the number of overlapping truncated spline functions with nonzero values increases

by one as we move to the right, across each partition point ti. Figure I compares the different

forms for (q = 2)-order piecewise (16) [top] and truncated (19) [bottom] spline functions,

both with a single partition point at x= 1, that equivalently define a line y = f(z). In the

top plot the line y from 0 < x < 2 is defined by two disjoint 2nd-order polynomial functions

that are shown using different triangular symbols; one 2nd-order polynomial function shown

as V V ... in subregion [0,1) and one 2nd-order polynomial function shown as A A ... in

subregion [1,2]. In the bottom plot the line y in the first subregion [0,1) is also defined by a

single 2nd-order polynomial function shown as V V -"".. However, in the second subregion

[1,2] the line y is defined as the sum of two overlapping 2nd-order polynomial functions; the

first a 2nd-order polynomial function overlapping from the first subregion shown as V V...

and the second a truncated 2nd-order polynomial function shown as A A.... Both the

piecewise (16) and truncated (19) spline functions equivalently define the line y.

The key point of this section is that once the number and the values of the partition

points (t}f"s-1 are fixed, the qth-order truncated regression spline model (19) with those

partition points is a linear model whose coefficients c are determined by straightforward least-

squares regression. Nevertheless, the major difficulty in implementing a qth-order regression

spline model is in choosing the number and values of the partition points.

We have defined regression spline models in R1 . The extension to higher dimensions

for p > 1 predictor variables is usually accomplished through products of univariate spline

functions. Nevertheless, regression using products of univariate spline functions suffers from

the curse-of-dimensionality discussed previously. From the perspective of regression splines,

MARS attempts to overcome the curse-of-dimensionality by using a modified recursive
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Quadratic Regression Spline Functions
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Figure 1. The different forms for a piecewise (16) and truncated (19) spline function using
(q = 2)-order splines over the region D = 10,21 with a single partition point at x= 1.
In the top plot, the line y is defined by two different disjoint 2nd-order polynomial
functions; one 2nd-order polynomial function for the region [0,1) shown as V V ...

and one 2nd-order polynomial function for the region [1,2] shown as A A.... In the
bottom plot the line y in the region from [0,1) is again defined by the single 2nd-
order polynomial function 8 + 7x+12x2 shown as V V"'. However, in the subregion
from [1,2], the line y is defined as the sum of two overlapping 2nd order polynomial
functions; 8 + 7x+12x2 that continues from the first subregion and the truncated
2nd-order polynomial function -32[(x-1)+] 2 shown as A A....
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partitioning strategy to select partitions of the domain. This permits MARS to exploit the

localized, low-dimensional structure of the data using linear (i.e., q = 1 order) truncated,

multidimensional regression spline functions.

D. FRIEDMAN'S INNOVATIONS FOR RECURSIVE PARTITIONING

Recursive partitioning and regression splines have tremendous power for modeling in

high-dimensional environments. Each approach also presents difficulties when applied; re-

cursive partitioning has discontinuities, variable interactions and poor model interpretation,

and regression splines battle the curse-of-dimensionality and lack a methodology to opti-

mally select its many parameters.

Two aspects of the recursive partitioning algorithm (13) contribute to the difficulties

of its application in a high-dimensional setting. The iterative division and elimination of the

parent region when creating its sibling subregions causes difficulty in estimating linear and

additive functions. The discontinuous nature of the step function H[qA (12) when applied

in each linear regression of the forward-step recursive partitioning algorithm (13g) causes

the lack of continuity. Together, these characteristics make interpretation of the recursive

partitioning model difficult at best.

To overcome recursive partitioning's difficulty in estimating linear and additive func-

tions, Friedman (1988) proposes that the parent region is not eliminated (as in recursive

partitioning) during the creation of its sibling subregions. Thus, in future iterations both

the parent and its sibling subregions are eligible for further partitioning. An immediate

result of retaining parent regions is overlapping subregions of the domain. Also, each par-

ent region may have multiple sets of sibling subregions. With this modification, recursive

partitioning can produce linear models with the repetitive partitioning of the initial region

R, by different predictor variables. Additive models with functions of more than one pre-

dictor variable can result from successive partitioning using different predictor variables.

This modification also allows for multiple partitions of the same predictor variable from the

same parent region.

The above modified recursive partitioning algorithm in which the parent region is

maintained results in a class of models with greater flexibility than permitted in recursive

partitioning. However, the modified approach is still burdened with the discontinuities
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caused by the step function H[j]. To alleviate this difficulty, Friedman proposes to replace

the step function H[rj] in the model formulation step (13g) with linear (i.e., q = 1 order)

regression splines in the form of left (-) and right (+) truncated splines. Let r,,, represent a

2-tuple associated with the Rmth subregion whose components identify the direction (left or

right), specific predictor variable, and partition point used to create subregion R, from its

parent region. Left and right truncated splines for creating the R..th and Rm+ist subregion

from the parent region Ri with a partition point in the domain of x1, at t are defined as

Tjr.(z)= [(t - z)+]= (t- x,)+ and

Tj,r=+ (0) = [(z - t)+]qml - ( - t)+, (20)

wherer rm = (-v, t ) and rm+1 = (+v, t ) and m >j. The additional subscripts j and m, or j

and m+ 1, provide a necessary audit trail for products of truncated splines when interactions

are allowed among multiple predictor variables. Note that the truncated spline functions act

in only one dimension although their argument is a vector of predictor variables.

A modeling approach using linear truncated splines (20) creates a continuous approx-

imating function 1(z) with discontinuities in the first partial derivative of f(z) at the

partition points of each predictor variable in the model. The argument for using linear

truncated splines (20) is that there is little to be gained in flexibility, and much to lose in

computational speed by imposing continuity beyond the function 1(z). Linear truncated

splines allow rapid updating of the regression model and its coefficients during each exhaus-

tive search for the next partition of an established subregion. The placement of additional

partitions may be used to compensate for the loss of flexibility in using linear truncated

splines to estimate f(z) over a subregion of the domain.

Implementation of the modifications proposed above to the recursive partitioning al-

gorithm avoids its identified difficulties and results in the MARS algorithm. The MARS

algorithm produces a linear (q = 1) truncated spline model (19) with overlapping subre-

gions {Rj}1 , of the domain D. Each overlapping subregion of a MARS model is defined by

the partition points of the predictor variables from an ordered sequence of linear truncated

splines.
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Define the product basis function Km.(x) as the ordered sequence of truncated splines

associated with subregion Rm. The first term of every product basis function is To,?1 (2) = 1,

the initialization function associated with R. Each additional truncated spline represents

the iterative partitioning of a parent region into a sibling subregion. For example, assume

the sequence of ordered truncated splines for the parent region R 7 is (1,3,7), which is split

using T7,v,,(z) to create subregion R,. The product basis function K"'(z) associated with

the Rmth subregion for this example is

Km(2) = To,r7 (z) x Ti,r3(9) X T3,r,7(z) X T7,r,.(m). (21)

where m > 7.

To evaluate KM.(z) at x requires the evaluation of each truncated spline in the product

basis function at x. If any of the truncated spline evaluations at x are zero, then K(x)

at a is 0. Otherwise, the evaluation of KM.(z) at 2 is the product of the truncated splines

at a. For example, let the ordered truncated splines for R5 E * 3 be (1, 2 and 5) with

r2 = (2,3) and rs = (-3,1). The product basis function associated with Rs is

Ks(z) - To, (z) x T,r 2(z) x T2 ,,(z)

X×(z-T2-3)+ X(I-T3)+ = (X2-3)(1-x 3) if z>3 andzs<1

t 0 otherwise.

If a = {5,4, .5) E Rs then Ks(a) = .5 and if a = 14,3.5,6) V Ks, then Ks(a) = 0.

The level of interaction of the predictor variables associated with Rj is the number

of truncated splines (without To,r.(z)) in a product basis function Ki(m). A one term

product basis function represents a truncated linear relationship of its predictor variable

while a two term product basis function represents a truncated 2-way interaction and so on.

The number and level of interactions in a MARS model are only limited by the data and

the maximum level of interaction (an input parameter) permitted in the MARS algorithm.

The MARS estimate of the unknown function f(z) is

S
f(m) = EciKj(z), (22)

j=1
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where i(z) is an additive function of the product basis functions {Ki(z)},=1 associated with

the subregions {R}q=1. Since for a given set of product basis functions the values of the

partition points, which of course are parameters of the model, are fired, the MARS model

(22) is a linear model whose coefficients {c} = may be determined by straightforward least

squares regression.

As in recursive partitioning the objective of the forward-step MARS algorithm is to

iteratively adjust the vector of coefficient values to best fit the data while identifying the

subregions {RJ 1 1, for M > S, whose product basis functions approximate f(z) based on

data at hand. And again, as in the recursive partitioning procedure, it makes sense to follow

the forward step procedure with a backward-step trimming procedure to remove the excess

(M - S) subregions from the model whose product basis functions no longer sufficiently

contribute to the accuracy of the model fit.

MARS uses residual-squared-error, because of its attractive computational properties,

in the forward and backward steps of the algorithm to evaluate model fit and compare

partition points. The actual backward fit criterion that is used for final model selection is a

modified form of the generalized cross validation criterion (GCV) first proposed by Craven

and Wahba (1979). The modified generalized cross validation criterion (GCV*) used in a

MARS model with subregions {Ri}&_1 is,
I N ]

GCV'(M) V [i - M(i)]2 (23)(1 - 'l2 "(3

The numerator in GCV" is the average residual-squared-error and the denominator is a

penalty term that reflects model complexity. The difference in GCV" and GCV is in the

computation of C(M)*, a model complexity penalty function that is increasing in M. In

MARS this modification is necessary to account for the heavy use of the data in determining

both the partition points and the coefficients of a final model. The use of other criteria,

perhaps more suitable to time series applications, is examined in Chapter V.

E. FORWARD STEP MARS ALGORITHM

The MARS forward-step algorithm (24) results from applying the modifications ad-

dressed in Section D to the forward-step recursive partitioning algorithm (13). Again we
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initialize R, = D. However, in MARS we create two new subregions Rm and R+ and

maintain the parent region Ri. during each partition. Also, MARS restricts each sequence

of truncated splines from having more than one partition per predictor variable because

this creates a nonlinear spline function i.e., one with q > 1. MARS enforces this restriction,

during the search for the next best partition of a subregion R1, by excluding from consid-

eration for a partition point any predictor variable already included in the product basis

function Kj(x). The most notable difference between the RP and MARS algorithms occurs

in forming the MARS model. Again following Friedman (1988), the product basis functions

{Ki(x))' 1 given at (21) and the truncated splines Tj,r,.(z) and Tj,.+,(=) given at (20)

replace the basis functions {Bi()1= I and the step functions H[t - x,] and H[zx - t] from

equation (12) in the forward step recursive partitioning algorithm (13g) respectively.

MARS Forward Step Algorithm (24)

RI = D, To, 1 ()=1 (a)

For each subregion R.m, m = 2 to M do: (b)

bof =oo, j'=0, v*=0, t=0 (c)

For each established subregion Ri, j = 1 to m - 1 do: (d)

For each predictor variable z in Rj, v = 1 to p such that v 0 K(x) do: (e)

For each data value Z,,k in Rj, t = Zv,fl to z,,k= do: (f)

g = (&cKdx)) + c,,Ki(z)Tir.(x) + cm+1Ki(z)T,t,,(z) (g)

bof= BOFA (h)

if bof < bof then bor =bof ;j= j;v=v; t end if (i)

end for

end for

end for
R,, f.- {. (r - z.) > 0) 0j)

,.+ -{R. : (z.. - t) > 0) (k)

-- m + 2 (1)

end for

end
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To characterize this MARS forward-step procedure we use the exampt4 riscussed in

Subsection 1 of Section B with p = 3 predictor variabies, and M = 5, the maximum

number of forward-step partitions. The MARS alb-Or1"m, m parallels the recursive partitioning

algorithm except for the modifications discussed in Section D. At the start of the MARS

forward-step algorithm for our example problem (step 24a), the initial subregion is again

the entire domain i.e., R1 = D. The single subregion MARS estimate of f(z) is restricted

to be identical to the recursive partitioning estimate,

1(z) = ciK1 (x) = clTor 1(X) = ci (25)

Again, let the exhaustive search in the first iteration of MARS identify the best partition

of R, as t" = z2,2S. Continuing, the three subregion MARS estimate of f(z) obtained at

the second step (first partition at t = X2,25) is, with To,r1 (z) = 1,

(z) = cl KI(z) + c 2 K2(0) + c3 K3(z) (26)

= cl To,rn (z) + C2 To,?1 (z) Ti,r2 (0) + c3 To,?1 (a) Ti,r3 (z)

= cl + c2 (to - 2)+ + C3 (X2 - t*)+,

SRiif ED

where aE R 2 if X2<X2,25 and 0 ER 1

R3  if X2 X22,25 and z ERI.

In the next iteration of the forward-step MARS algorithm the best partition point

will occur within the subregions RI, R 2 or R3 and as in recursive partitioning, with one

exception, will be chosen after evaluation of all potential partition points for each predic-

tor variable within the three subregions. The exception, as discussed previously, prevents

another partition on X2 in R 2 or R 3 because it would create a truncated spline function of

order greater than 1. With M = 5 the forward step of the MARS algorithm will be com-

plete after a second partition in D. The final forward step MARS estimate of f(m) for our

example will include all terms in (26) and the additional two terms generated by the second

partition. The model will have 5 single term product spline functions (excluding To,r. (z))
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if the second partition occurs in R1 while the model will have 3 single term product spline

functions and two 2-way product spline functions if the second partition occurs in R 2 or R 3.

After the backward tr.mming procedure, the final MARS model retains the form of

(22) with cl the coefficient of the product basis function KI(z) and the remaining terms the

coefficients and product basis functions that survive the MARS backward step subregion

deletion strategy. To provide an insight of predictor variable relationships we can rearrange

the final MARS estimate of f(z) in an ANOVA style decomposition (Friedman, 1988),

f(m) = c, + ciKi(z) + ciKi(z) +... (27)
V=1 V=2

where V indexes the number of truncated splines (excluding To, (z)) in the product basis

function {Ki(z)}I 1 . This method identifies any and all contributions to f(z) by variables

of interest. Product basis functions with the index V = 1 reflect truncated linear trends

and those with the index V = 2 reflect truncated 2-way interactions, etc. The ANOVA

style decomposition (27) identifies which variables enter the model, whether they are purely

additive, or are involved in interactions with other variables. Analysis of the ANOVA style

decomposition facilitates interpretation of the MARS model.

F. NONLINEAR MODELING OF UNIVARXATE TIME SERIES USING

MARS

As previously discussed in the introduction, most research in and applications of time

series modeling and analysis is focused on linear models. This is due to the maturity of the

theory for linear time series, and the numerous studies and statistical packages that exist to

facilitate the use of linear time series models. However, more frequently than not, nonlinear

time dependent systems abound that are not adequately handled by linear models. The

use of linear models during the analysis of these nonlinear systems may require invalid

assumptions that could lead to erroneous or misleading conclusions. For these systems we

need to consider general classes of nonlinear models that readily adapt to the precise form

of a nonlinear system of interest (Priestley, 1988 and Tong, 1985).

An example of a nonlinear time series system is that of sea-surface temperatures and

the associated wind velocity and direction. Consider the sea-surface temperatures alone, a
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specific example is the sea-surface temperatures analyzed by Breaker and Lewis (1985). A

very dear nonlinearity in this time series is the abrupt, yearly spring transition to lower

temperatures. The spring transition can be dearly seen in Figure 35 in Chapter IV, espe-

cially at about 2190 days. More particularly, the spring transition is strongly coupled with

the wind direction, which shifts in the spring (Breaker and Lewis, 1988, pg 395). In addition

there is an effect of the El Nino (a tropical warming) that occurs during some years. We

return to this example in Chapter IV.

By letting the predictor variables for the "th value in a time series {X.} be X,-l,,

XI-2, ... , X,,, and combining these predictor variables into a linear additive function,

one gets the well known linear AR(p) time series models (Priestley, 1988). What happens

if we use the MARS methodology to model the effect of X, 1 , X,- 2 ,... , X,-, on X,? The

answer is that we still obtain autoregressive models. However, these models can be nonlinear

models in the sense that the lagged predictor variables can have threshold terms, in the form

of truncated spline functions (20) and can also interact with the nonlinear terms formed

with other lagged predictor variables. The remainder of this chapter is a discussion of the

form and analysis of these nonlinear univariate time series models.

Threshold time series models (models with partition points) are a dass of nonlinear

models that emerge naturally as a result of changing physical behavior. Within the domain

of the predictor variables, different model forms are necessary to capture changes to the

relationship between the predictor and response variables (a simple example of a threshold

model is at equation (33)). Tong (1983) provides one threshold modeling methodology for

this behavior (TAR - Threshold Autoregression) that identifies piecewise linear pieces of

nonlinear functions over disjoint subregions of the domain D of the time series {X,}, i.e.,

identify linear models within each disjoint subregion of the domain. One application of

Tong's threshold modeling methodology is for nonlinear systems thought to possess peri-

odic behavior in the form of stationary sustained oscillations (limit cycles). Tong's threshold

methodology has tremendous power and flexibility for modeling of many times series. How-

ever, unless Tong's methodology is constrained to be continuous, it creates disjoint subregion

models that are discontinuous at subregion boundaries.

With MARS, by letting the predictor variables be lagged values of a time series, one

admits a more general class of continuous nonlinear threshold models than permitted by
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Tong's TAR approach. The methodology for developing this class of nonlinear threshold

models is called ASTAR (Adaptive Spline Threshold Autoregression). The fact that one

obtains a more general class of continuous nonlinear threshold models can be shown using

a simple example. Let X, for r = 1,.. ,N, be a time series we wish to model with ASTAR

using, for example, p = 3 lagged predictor variables namely, X-I,X,- 2 and X,- 3. Each

forward step of the ASTAR algorithm selects one and only one set of new terms for the

ASTAR model from the candidates specified by previously selected terms of the model.

For our example problem the sets of candidates in the initial forward step of the ASTAR

algorithm are

(X,-, - t*)+ and (t* - X-I)+, or

(X,-2 - t*)+ and (t* - X,- 2 )+, or

(X,-3 - t*)+ and (t* - X,- 3 )+, (28)

for some partition point (threshold) t° in the individual domain of the lagged predictor

variables. For our example problem, assume that ASTAR selects the lagged predictor

variable X,- 2 with threshold value t* = t1 i.e., (X-2 - tl)+ and ( 1 -- X,- 2 )+ axe the

initial terms (other than the constant) in the ASTAR model. The sets of candidates in the

second forward step of the ASTAR algorithm includes all candidates in (28) and the new

sets of candidates:

(XI-I - t*)+(X'12 - tI)+ and (t ° - X -I)+(X -2 - tl)+, or

(X-3 - t*)+(X,.-2 - tl)+ and (t* - X,--3)+(X- 2 - tl)+, or

(X.-I - t*)+(t - X,- 2)+ and (t* - X,-)+(t, - X,- 2)+, or

(X,-3 - t*)+(tl - X.,-2)+ and (t* - X,1 - 3)+(tl - X,- 2)+, (29)

due to the initial selection of (Xr_2 - tl)+ and (tI - X,- 2 )+, and where t* is to be de-

termined. Thus one could have multiple thresholds on one variable, say Xr- 2, by again

selecting as the next set of model terms (X,- 2 - t*)+ and (ti - Xr- 2 )+ from (28) for some

partition point t- ti. The sets of candidates for each subsequent forward step of the
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ASTAR algorithm is nondecreasing in size and is based on previously selected terms of the

model. As discussed in Section D, the forward-step algorithm is followed by a backward-

step algorithm that trims the excess (M - S) terms from the model, where S is the final

number of terms in the model, with 1 < S < M.

Let the predictor variables in MARS for the rth value in a time series {XT} be X- 1,

X,-2, ... , X,,, which we represent as XP_1 . Following (22), the functional form of the

ASTAR model that estimates X, is

S
r, = EciKi(XP_,), (30)

where X is an additive function of the product spline basis functions Ki(XP_,)),f=,

associated with the subregions {Rj1 }=1 . The functional form of the ASTAR model (30)

may be expanded using the ordered sequences of truncated spline functions (20 and 21)

that define each product spline basis function. Let a and b be dummy variables that index

the ordered sequence of truncated spline functions Ta,rb(X _l) such that 0 _< a < b < j.

The functional form of the ASTAR model (30) for the rth value in a time series {X) using

this expansion is

S
X, = c, fi r - t)] (31)

j=1 T.rbECKi

where the argument, XP-1 , of T.,b(X _1 ), and Ki(Xp_1 ) is suppressed for simplicity.

Also rb = (±v, t ) from (20), and sgn, is the sign of v that determines a left (-v) or right

(+v) truncated spline function.

By modeling univariate time series using ASTAR we overcome some of the limitations

of Tong's approach. The ASTAR methodology creates threshold time series models that

are naturally continuous in the domain of the predictor variables, and it allows interactions

among lagged predictor variables. Also, the ASTAR time series model can have multiple

lagged predictor variable thresholds, e.g., the model (29) if the new partition point ti # tj.

In contrast, Tong's methodology creates threshold models from piecewise linear models

whose terms are restricted to the initial sets of candidates of the ASTAR algorithm (equation

(28) for our example). Tong's threshold models do not allow interactions among lagged
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predictor variables and are usually limited to a single threshold value over all the lagged

predictor variables because of the difficulties associated with the threshold selection process.

An initial question that exists is whether MARS is able to identify and model simple

linear and nonlinear times series models? If not it would be of little value to use MARS

with real data with unknown structure. In the next two sections, simulation experiments

are used to determine the ability of MARS to detect and model simple linear and nonlinear

time series models. The simulation of an AR(1) model with known coefficients examines

the ability of ASTAR to detect and model a simple linear time series. The simulation of a

threshold model with 'AR(l)-like' models in each disjoint subregion examines the ability of

ASTAR to detect and model simple nonlinear threshold time series. The interest in these

simulations is two-fold: how often was the true model identified, and if so, how well were

the parameters K and p estimated. Finally, as a demonstration of the ability of ASTAR

to model a real univariate time series system, the last section of this chapter considers the

widely studied yearly Wolf sunspot numbers, a nonlinear time series with periodic behavior.

1. AR(1) Time Series Model Simulations

The initial simulation experiments are of the first order autoregressive (AR(l))

time series model,

X, = pX-I + K +. (32)

where r = 1,2,...,N indexes the time series, p is a constant coefficient varied within

experiments, K is the model constant, taken to be zero, and c, is N(O, e2). The model is

usually considered under the stationarity conditions (I p 1< 1), but non-stationary processes

such as random walks (I p I = 1) and explosive processes (I p I > 1), are also of interest.

Two categories of experiments were conducted using the AR(1) time series model.

The first experiment required ASTAR to identify and estimate parameters of a

time series model from the simulated data of the AR(1) time series model using one lag

predictor variable X-1, and using M = 3, the maximum number of subregions in the

forward-step ASTAR procedure. The first experiment's alternative models (to the AR(1)

time series model) either have no Xr- 1 term (a constant model) or have a X,_1 term with
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athreshold value t greater than min{X,- = ) . In this case we call the threshold value t

an internal threshold. %

The second experiment required ASTAR to identify and estimate parameters of a

time series model from the simulated data of the AR(1) time series model when up to four

lag predictor variables, {X,_j)4=, are allowed, and using M = 8, the maximum number

of subregions allowed in the forward-step ASTAR procedure. The second experiment's

alternative models include constant models, time series models with an internal threshold

value, or any time series model that includes a term other than X,-,.

Several simulation results are shown in Figures 2 - 7 for p = .5, .7 and .9, K = 0,

and e, = N(0,1). Each figure is a series of box plots for the estimated coefficients of the

100 simulated models correctly identified as AR(1) time series models by ASTAR for in-

creasing values of N, the statistics for A being given in the top set of boxplots, and the

statistics for K in the bottom set. The true value of each model coefficient is identi-

flied by the dashed line across the box plots. At the top of each figure we see the length

N of each simulated time series, the number C of the 100 simulated models correctly

identified by the ASTAR procedure, and the equivalent sample size for independent data,

Eq S SIZE = (NI a=-. p) (Priestley, 1981). Underneath each box plot is summary in-

formation for the coefficient estimates of the correctly identified AR(1) time series models

i.e., the sample mean and sample standard deviation of the estimated values in the box

plots. By comparing the true and the estimated values of the model coefficients across

increasing values of N it is observed that the estimated values of the coefficients tend to the

true value as N increases. Also, in all but one simulation the number of correctly identified

models C rises to 100 for increasing values of N. Note that the ASTAR estimates for p have

negative bias for small values of N that generally decreases as N increases. The downward

bias of A is similar to that identified by Kendall et al. (1983) and others when using data

for estimating autocorrelations.

2. Nonlinear Threshold Time Series Model Simulations

To observe the ability of ASTAR to capture nonlinear threshold time series model

characteristics, simulation experiments of the 2-subregion threshold time series model (Tong,
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P )- p  + K + C, for - 2.2..

N 100 250 500 750
C 98 100 100 100

Eq S SIZE 33 83 166 250

0.7

0. .

0.5

0.4t - ----- ----,-0.3
Mean 0.48172 0.48458 0.49731 0.49689

ftd Dew 0.08187 0.05047 0.03561 0.03265

0.04
0.02

-0.02.-0,= L
"ean -0.0020 0.00037 0.00041 0.00004

sd Doy 0.01527 0.006W 0.002 0.0017s

Figure 2. AR(1) MODEL SIMULATION: ASTAR estimates for p = .5,K = 0 using 2 =
N(0, 1) from C simulations of an AR(1) model for increasing values of N, with P = 1
lag predictor variables, and M = 3, the number of forward-step subregions permitted
in the ASTAR algorithm. Each simulation consists of 100 replications. The boxplots
are for the estimates 0 and R of the model parameters when ASTAR correctly iden-
tified the AR(1) model. For N = 100, 2 simulations were incorrectly identified as
confstan models.
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) +  + , for - 1.2.N

N 100 250 500 750
C 95 1oo 98 100

Eq S SIZE 88 63 168 250

0.6

0.4

0.3

Mean 0.47060 0.49001 0.5023 0.49663
Std Dev 0.08345 0.06153 0.04425 0.03613

0.0

-0.02

Mean 0.00135 -0.0018 -0.0002 0.00050
Std Dev 0.02254 0.01065 0.00464 0.00371

Figure 3. AR(1) MODEL SIMULATION: ASTAR estimates for p = .5,K = 0 using ? =
N(O, 1) from C simulations of an AR(1) model for increasing values of N with P = 4
lag predictor variables, and M = 8, the number of forward-step subregions permitted

in the ASTAR algorithm. Each simulation consists of 100 replications. The boxplots
are for the estimates A and k of the model parameters when ASTAR correctly iden-
tified the AR(1) model. For N = 100, 5 simulations were incorrectly identified as; 2
constant models, 1 AR(S) model and 2 AR(S) models. For N = 500, 2 simulations
were incorrectly identified as constant models.
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xt) pXj_,) K c, for r- 1.2 ....

N 100 250 500 750
C 100 100 100 100
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Miean 0.67304 0.69267 0.68788 0.69791
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Mean 0.00066 0.00047 0.00029 0.00012

SM De, 0.01319 0.00537 0.00262 0.00160

Figure 4. AR(1) MODEL SIMULATION: ASTAR estimates for p = .7,K = 0 using , =
N(O, 1) from C simulations of an AR(1) model for increasing values of N, with P = 1
lag predictor variables, and M = 3, the number of forward-step subregions permitted
in the ASTAR algorithm. Each simulation consists of 100 replications. The box-
plots are for the estimates A and R of the model parameters when ASTAR correctly
identified the AR(1) model. Here all cases were correctly identified.
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X(.,) = (-j) + K + e, for r - 1.2.... .

N 100 250 500 750
C 94 100 100 100

Eq s SIZE 17 44 86 132

0.5

0dtI- O.W.460 0.66927 0.69346 0.6902
9Ld Dev 0.07390 0.04356 0.03535 0.02904

0.04

-0.04+

-0 00026 -0000 -0.0040.00048
Std Dew 0.028M 0.00673 0.00482 0.00333

Figure 5. AR(1) MODEL SIMULATION: ASTAR estimates for p = .7,K = 0 using o
N(O, 1) from C simulations of an AR(1) model for increasing values of N with P =4
lag predictor variables, and M = 8, the number of forward-step subregions permitted
in the ASTAR algorithm. Each simulation consists of 100 replications. The boxplots
are for the estimates A and K of the model parameters when ASTAR correctly iden-
tified the AR(1) model. For N = 100, 6 simulations were incorrectly identified as; I
AR(S) models, 2 AR(S) model and 2 AR(4) models.
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X(.) - px(,-,) K + , for r . 1.2. N

N 100 250 500 750
C 100 100 100 100

EqS SIZE 5 23 26 39

0.960 .9 0 --t _ --, - ------------ --- ------_ _
0.85

Mean 0.8680 0.88559 0.89239 0.8945"
81d Dev 0.065"7 0.02932 0.01977 0.01685

0.02
-:I L
0 - -------- -----

-0.02

Mean -0.0020 0.00006 -0.0003 -0.000
Std Drv 0.03577 0.00606 0.00244 0.00191

Figure 6. AR(1) MODEL SIMULATION: ASTAR estimates for p = .9,K = 0 using o =
N(O, 1) from C simulations of an AR(1) model for increasing values of N, with P = 1
lag predictor variables, and M = 3, the number of forward-step subregions permitted
in the ASTAR algorithm. Each simulation consists of 100 replications. The box-
plots are for the estimates A and K of the model parameters when ASTAR correctly
identified the AR(1) model. Here all cases were correctly identified.
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X(,.) , X(,-) + X + , for r, -1.2.... .N

N 100 250 500 750
C 97 t00 100 100

Eq SIZE 5 13 a6 39

0.05 T
0.85
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Mean 0.66124 0.686 0.89397 0.89316

Ad 1e) 0.05479 0.03283 0.02804 0.0861
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-0.04
Mean -0.0003 -0.0012 0.00019 0.00113

Std Dev 0.02679 0.00882 0.00491 0.00392

Figure 7. AR(1) MODEL SIMULATION: ASTAR estimates for p = .9,K 0 using o- =
N(O, 1) from C simulations of an AR(1) model for increasing values of N with P = 4
lag predictor variables, and M = 8, the number of forward-step subregions permitted
in the ASTAR algorithm Each simulation consists of 100 replications. The boxplots
are for the estimates A and K of the model parameters when ASTAR correctly iden-
tified the AR(1) model. For N = 100, S simulations were incorrectly identified as; 2
AR(S) models and 1 AR(3) model.
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1983),

X, p=IPX,- 1 +cE if X,_1<0 (33)
P2X,- +c .E X,.-l > 0

were considered, where r = 1,2,... , N indexes the time series, p, and p2 are constant co-

efficients varied for different experiments and c is N(0, a2). This is the simplest threshold

model which has been proposed and provides a convenient starting point for initial evalua-

tion and validation of the ASTAR procedure. Note that the nonlinear threshold time series

model (33) has an 'AR(1)-like' model in each subregion, which implies that X, can have

different variance in each of the two subregions since the variance of c is assumed constant

in each region. Also for a threshold at X 1 = 0, the expected number of sample values in

each subregion will be the same only if P1 = -p2.

Two categories of experiments were conducted using the nonlinear threshold time

series model.

The first experiment required ASTAR to identify and estimate parameters of a

time series model from the simulated data of the nonlinear threshold time series model using

one lag predictor variable X,-, and using M = 3, the maximum number of subregions in

the forward-step ASTAR procedure. The first experiment's alternative models include the

constant model, linear AR(1) time series models, or nonlinear time series models that have

more than one internal threshold.

The second experiment required ASTAR to identify and estimate parameters of

a time series model from the simulated data of the nonlinear threshold time series model

when up to four lag predictor variables, {X }& , are allowed, and using M = 10, the

maximum number of subregions allowed in the forward-step ASTAR procedure. The second

experiment's alternative models include the constant model, linear and nonlinear time series

models with terms other than X,- 1 , or nonlinear time series models with more than one

internal threshold value on X,-,.

Several simulation results are shown in Figures 8 - 11 for P1,P2 = .7, .3 and -. 6, .6,

and e, = N(0,.25). As with the previous AR(1) time series model simulation experiments,

each figure is a series of box plots for the estimated coefficients of the 100 simulated models

correctly identified as nonlinear threshold time series models by ASTAR for increasing values
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of N. The true value of each model coefficient is identified by the dashed line across the box

plots. At the top of each figure is the length N of each simulated time series, and the number

C of the 100 simulated models correctly identified by the ASTAR procedure. Underneath

each box plot is summary information for the coefficient estimates of the correctly identified

nonlinear threshold time series models i.e., the sample mean and sample standard deviation

of the estimated values in the boxplots. Note that the number of correctly identified models

rises for increasing values of N. However, a consistent improvement in the mean and

standard deviation for the estimated values of the model coefficients is not always observed

for increasing values of N. For the most part this is attributed to the increasing number of

correctly identified models for increasing values of N.

X() 'PX(.-l) + If X-) < 0 - N
"paX(,-$) + C, if X( a 0

N 500 750 1000 1500
C 67 75 80 91

',

1.0 ,

0.9
0.8
0.7 - - -- - -- -

Mean 0.?4468 0.71595 0.70313 0.70416
3Ld Dev 0.08802 0.06797 0.04787 0.03921

0.5*
0.4
0.3..... -

0.2 II

Mean 0.26229 0.26962 0.25803 0.28627
Std Dev 0.11678 0.10299 0.09047 0.07474

Figure 8. THRESHOLD MODEL SIMULATION: ASTAR model estimates for P, p2 = .7,.3
using 4 = N(O, .25) from C simulations of a threshold model for increasing values
of N, with P = I lag predictor variables, and M = 3, the number of forward-step
subregions permitted in the ASTAR algorithm. Each simulation consists of 100 repli-
cations. The boxplots are for the estimates A, and h of the model parameters when
ASTAR correctly identified the threshold model. The models of the simulations that
ASTAR did not correctly identify as the threshold model contained an incorrect number
of subregions or lacked an AR(I) term in one of the two subregions.
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X (., ) - P ox ( , - ) +- C " I t x (, _ -,) < 0 o r r -

- if X(_ ) at 0
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0.4
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Men 0.26482 0.27559 0.27580 0.29464
Std Dev 0.13369 0.10888 0.09273 0.07551

Figure 9. THRESHOLD MODEL SIMULATION: ASTAR estimates for Pi,P2 = .7,.3 using
a= N(O, .25) from C simulations of a threshold model for increasing values of N, with
P = 4 lag predictor variables, and M = 10, the number of forward-step subregions
permitted in the ASTAR algorithm. Each simulation consists of 100 replications.
The boxplots are for the estimates A, and A2 of the model parameters when ASTAR
correctly identified the threshold model. The models of the simulations that ASTAR
did not correctly identify as the threshold model contained an incorrect number of
subregions, lacked an AR(1) term in one of the two subregions or contained terms
With X- 2, X1 -3, or X,-4.
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X(') -PlX(Ts) + if X(_I) < 0 f - - 1.
PBX(,-,) + 9., if X(._,) a 0

N 500 760 1000 1500

C 98 99 99 100

Po

-0.4
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Mean -0.6043 -0.6969 -0.6969 -0.5962
Std Dev 0.14015 0.1077 0.10957 0.09013

0.8

0:

0eon 0.60220 0.61122 0.60117 0.59866
Std Dow 0.07206 0.0682 0.06360 0.03899

Figure 10. THRESHOLD MODEL SIMULATION: ASTAR estimates for Pi, p2 = -. 6, .6 using
o = N(O, .25) from C simulations of a threshold model for increasing values of
N, with P = 1 lag predictor variables, and M = 3, the number of forward-step
subregions permitted in the ASTAR algorithm. Each simulation consists of 100
replications. The boxplots are for the estimates Al and 02 of the model parameters
when ASTAR correctly identified the threshold model The models of the simulations
that ASTAR did not correctly identify as the threshold model contained an incorrect
number of subregions or lacked an AR(i) term in one of the two subregions.
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0.7
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Figure 11. THRESHOLD MODEL SIMULATION: ASTAR estimates for PI,P2 = -. 6, .6 using
= N(O, .25) from C sinmlations of a threshold model for increasing values of

N, with P = 4 lag predictor variables, and M = 10, the number of forward-step
subregions permitted in the ASTAR algorithm Each simulation consists of 100
replications. The boxplots are for the estimates , and 02 of the model parameters
when ASTAR correctly identified the threshold models The models of the simulations
that ASTAR did not correctly identify as the threshold model contained an incorrect
number of subregions, lacked an AR(1) term in one of the two subregions or contained
terms With X,- 2,X,- 3 , or X,-4.
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3. Threshold Modeling of the Yearly Wolf Sunspot Numbers

As an illustration of ASTAR's ability to model an actual time series we examined

221 (1700-1920) of the yearly Wolf sunspot numbers. These yearly Wolf sunspot numbers

are relative measures of the average monthly sunspot activity on the surface of the sun (see,

e.g., Scientific American, February 1990). The analysis was performed on the yearly sunspot

numbers to facilitate comparison of the MARS methodology with other nonlinear time series

modeling efforts (analysis of monthly sunspot numbers would also be of interest). Some

of the early analysis and modeling of the yearly sunspot numbers was performed by Yule

(1927) as an example for introducing autoregressive models. Recently suggested nonlinear

models of the yearly sunspot numbers include threshold models (Tong, 1983, 1985) and

bilinear models (Rao and Gabr, 1984). A detailed review of the history of the sunspot

numbers is provided by Izenmi ' (1983).

The data (Figure 12) is quite 'periodic' but has nonsymmetric cycles with ex-

tremely sharp peaks and troughs. The cycles (Table 1) generally vary between 10 and

12 years with the greater number of sunspots concentrated in each descent period versus

the accompanying ascent period. The average ascent period is 4.60 years and the average

descent period is 6.58 years. Attempts to model the data with a fixed cycle period signal

plus (possibly correlated) noise have failed because the cyclical component in the spectrum

(Figure 14, top) is quite spread out and diffuse.

TABLE 1. ASCENT AND DESCENT PERIODS OF THE YEARLY WOLF SUNSPOT
NUMBERS (1700-1920).

Ascent period 5 5 4 5 6 6 3 3 3 6 6

Descent period 7 6 6 6 5 5 6 6 11 6 7

Ascent (cont) 7 4 5 4 3 5 4 4 4

Descent (cont) 3 6 8 7 8 6 8 8
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Figure 12. The yearly Wolf sunspot numbers (1700-1955). The data is quite 'periodic' but has
nonsyinmetric cycles with extremely sharp peaks and troughs. The cycles generally
vary between 10 and 12 years with the greater number of sunspots concentrated in
each descent period versus the accompanying ascent period.
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a. Stable Periodic Limit Points in Threshold Models

One of the interesting characteristics of Tong's analysis of the yearly sunspot

numbers included the development of threshold models with stationary harmonic behavior

or limit cycles, i.e., models in which f(X) is a deterministic threshold function with a limit

cycle, perturbed by Gaussian white noise. Using Tong (1983), let r = 1,2,... index a times
series and let X = {X., X-,... , Xrp+I) denote a p-dimensional vector in D E RP that

satisfies the equation,

X p = f(XP,_l), (34)

where f is a vector-valued function. Let fj(X) denote the jth iterate of f, i.e.,

f'(X) = AAA .. (AX))...)). (35)

j of them

We say that a p-dimensional vector X' P is a stable limit point of the function f with respect

to the domain D if

fP(Xo) - X *P as j - oo V Xo E D. (36)

Also, we say that a p-dimensional vector CP is a stable periodic limit point with period

T > 1 of the function f with respect to the domain D if

fjT(X 0 ) -- as j -,o V Xo ED, (37)

and the convergence does not hold for any divisor of T. It follows that CP1, fl(C),

f 2 (C ),..., fT-1(C~) are simultaneously distinct stable periodic points of the function

f with respect to D. If we let fi(CPI) be denoted by Cj'+j,i = 0,1,... ,T - 1, then the set

CP C2C,...,ITI is called a stable limit cycle of the function f with respect to D.

b. ASTAR Models for the Yearly Wolf Sunspot Numbers

The primary interest in limit cycles is for investigating the underlying char-

acteristics of the true time series function f(X) given at (1). If the cyclical behavior of

f(X) for the yearly sunspot numbers can be modeled as a limit cycle perturbed by Gaus-

sian white noise, then when applying ASTAR to the yearly sunspot numbers it would be
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satisfying to identify an underlying limit cycle in the estimate of f(X). With this objective

in mind 20 ASTAR models of the yearly sunspot numbers were investigated. The period

of the modeling effort (1700-1920) corresponds to similar modeling efforts by Tong (1983,

1985) and Rao and Gabr (1984). The maximum order of each model (number of lagged

predictor variables) was restricted to 20 and the first 20 sunspot numbers (1700-1719) were

used for model initialization. It might be noted that the ASTAR models were identified

with MARS 2.0 installed on an IBM3033 Computer using VS Fortran. Each model required

from 15 to 30 seconds of CPU time.

Table 2 provides a summary of the 20 ASTAR models for the yearly sunspot

numbers (1720-1920), ordered by the mean sum of squares (MSS) of the fitted residuals

for each ASTAR model. The first three columns identify, respectively, the model number,

MSS and the modified generalized cross validation criterion GCV given in (23). The

fourth through sixth columns identify the number of estimated parameters, the number

of partition points and the maximum level of interaction in each model. Columns seven

and eight identify the length (in years) of each model's limit cycle (if one exists) and the

number and lengths (in years) of the one or more type 'subcycles' (ascent and descent

periods) within the limit cycle. We use MSS instead of MSS I/2 to facilitate comparison of

the ASTAR models with other modeling efforts of the yearly sunspot numbers.

The different models in Table 2 occurred because the user parameters of the

ASTAR algorithm were varied. These parameters include: MI = 2, 3, or 4, the maximum

level of lagged predictor variable interaction; MS = 10 and 18, the minimum separation of a

lagged predictor variable's partition points; M = 15, 20, and 25, the number of steps during

the forward-step algorithm; and p = 12 or 18, the number of lagged predictor variables (12

lagged predictor variables correspond to the maximum order of the model used by Tong

(1985) for prediction of the sunspot numbers). The separation of a predictor variable's

partition points may be thought of as a smoothing parameter similar to the bandwidth

in kernel smoothing. Some of the resulting models were identical. For example, identical

3-way interaction models could result from using the different model parameters MI = 3

and MI = 4 if the MARS algorithm rejects all 4-way interactions. Also, most of the models

formed using MI = 2 were not of interest. Note that Chapter IV provides a discussion of

the user parameters within the MARS algorithm.
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TABLE 2. ASTAR MODELS FOR THE YEARLY WOLF SUNSPOT NUMBERS (1720-1920).

Number of Number of Level of Length of Number
MSS GCV" Model Interior Model Limit Cycle (Lengths) of

I Parameters Thresholds Interaction (in years) Sub cycles
1 91.4 151.7 25 9 3 -

2 91.6 136.4 16 4 4 225 27 (8,9)

3 95.3 157.9 18 4 5 -

4 101.0 130.4 15 6 4 43 4 (10,11)

5 103.6 183.9 18 3 4 -

6 110.5 187.6 17 3 3 167 15 (11,12)

7 111.7 153.9 14 4 3 9 1 (9)

8 113.0 162.8 19 7 2 9 1 (9)

9 114.1 141.0 14 6 3 137 13 (10,11)

10 114.2 160.8 14 3 4 -

11 114.2 194.7 17 3 3 120 11 (10,11)

12 115.9 162.9 13 3 3 -

13 115.9 163.6 13 3 4 120 11 (10,11)

14 116.0 174.3 13 2 4 94 10 (9,10)

15 117.6 190.9 15 2 4 -

16 119.5 171.2 14 3 3 -

17 119.6 206.6 18 3 3 23 4 (5,6)

18 119.8 164.4 11 2 3 133 12 (11,12)

19 125.6 172.7 11 2 2 78 7 (11,12)

20 126.2 192.7 13 1 3 -
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Some form of a limit cycle exists in 12 of the 20 ASTAR models. Also, 7 of

the 12 models, namely 4,6,9,11,13,18 and 19, provide limit cycles with lengths 43, 167, 137,

120, 120, 133 and 78 respectively, and 'subcycles' with lengths and range similar enough to

the behavior of the yearly sunspot data (Table 1) to warrant further analysis. Of these 7

models, 2 (Models 4 and 9) have both low GCV* values and provide fitted residuals that

appear, using test statistics and graphical analysis, e.g., Q-Q plots, to be independent and

Gaussian. Some of the test statistics for the fitted residuals of these two models are provided

in Table 3.

TABLE 3. STATISTICS FOR THE FITTED RESIDUALS OF ASTAR MODELS 4
AND 9 OF THE YEARLY WOLF SUNSPOT NUMBERS (1720-1920).

Model 4 Model 9

Mean 0.000 0.000

GCV" 130.4 141.0

Skewness .346 0.0813 0 for normal distribution

Kurtosis 0.153 0.673 0 for normal distribution

K-S .349 .275 level of significance

C-M > .15 > .15 level of significance

A-D > .15 > .15 level of significance

L-M .0466 .6892 level of significance

The Skewness and Kurtosis statistics serve as a general indicator of the sym-

metry and heaviness of the tails for the sample distribution function of the fitted residuals

Fe(z). The Kolmogorov-Smirnov (K-S) test statistic measures the maximum absolute dis-

tance between Fe(z) and the hypothesized true normal N(0,1) distribution function Fx(z)

while the Cramer-von Mises (C-M) statistic measures the integral of the squared distance

between the two functions. A drawback to the K-S and C-M tests are that they lack sensi-

tivity to departures from the nvll hypothesis that occur in the tails of a distribution. As an

approach to overcome the lack of sensitivity of the K-S and C-M tests, the Anderson-Darling
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(A-D) test statistic weights the distances between the two functions. A final test for inde-

pendent and Gaussian error structure is provided by the Lin-Mudhoekar (L-M) (1980) test

statistic which tests for asymmetry. Even though the GCV* for Model 4 is lower than that

for Model 9, we rejected Model 4 due to the low level of significance of the L-M test statistic

and identified Model 9 as the best model (with limit cycle) of the 20 models considered in

the initial analysis.

Note that the MARS algorithm generated ASTAR Model 9 using 20 lagged

predictor variables that were permitted to form 1, 2, and 3-way interactions during a max-

imum of M = 15 forward steps of the forward-step algorithm. The minimum span between

threshold values for a single predictor variable was 18 sunspots. This span was chosen

because there were 18 sunspot cycles between 1720 and 1920. Model 9 is

ASTAR Model 9

2.711 + .960X,-1 + .332(47.0 - Xr-s)+ - .257(59.1 - X,-g)+

.,. = - .003X,_i(X- 2 - 26.0)+ + .017X_1 (44.0 - X,- 3)+ (38)

- .032Xr_1(17.1 - X,- 4)+ + .004X,-1(26.0 - X 7 - 2)+(X,-s - 41.0)+

where (z)+ is a plus function with value x if z > 0 and 0 otherwise. Model 9 has 14

parameters with 8 terms (a constant term and 3 one-way, 3 two-way and 1 three-way

interactions) and 6 threshold values (1 each on X,- 2, X,- 3, X,- 4, and X?-g and 2 on
X7-s).

Figures 13-19 are various plots of the fitted values and residuals of ASTAR

Model 9. Figure 13 shows the fitted values of the model versus the yearly Wolf sunspot

numbers (1720-1920). The model fit is further examined using the estimated normalized

periodogram (Figure 14) of the sunspot number data [top] and model fit [bottom], empirical

quantile-quantile plot (Figure 15) and autocorrelation function plots (Figure 16) of the fitted

values of the model versus the yearly Wolf sunspot numbers (1720-1920). The model appears

to equally overfit and underfit the peaks and troughs as it captures the general structure
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of the yearly sunspot numbers. Again, note the spread of the cyclical component in the

spectrum (Figure 14) that has complicated efforts to model the sunspot numbers with a fixed

period signal plus (possibly correlated) noise. The fitted residuals of the model are examined

using residual versus time and fit plots (Figure 17) and the residual autocorrelation function

plot (Figure 18). In Figure 17 the slight lack of negative residuals for small fitted values

of the model is attributed to the yearly sunspot numbers being positive random variables.

In Figure 18 no pattern of dependence appears in the autocorrelation function of the fitted

residuals. Figure 19 shows the 137 year limit cycle of Model 9 with its ascent and descent

periods. The limit cycle is asymmetric with a range in amplitude of 17.7 to 94.5 and an

average ascent/descent period of 4.3/6.23 years versus 4.6/6.58 years for the actual yearly

sunspot numbers from 1700 to 1920 (Table 1). In comparing Model 9's limit cycle (Figure

19) with the real yearly sunspot data (Figure 13) note that the standard deviation of the

fitted residual's error variance is estimated as (MSS) 1 /2 = 10.69 sunspots.

------ Wof Sunspot Numbers
MARS Model 9

+IL i

2 i i
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3700 1T0 low 1060 10 1960

Year"

Figure 13. The yearly Wolf sunspot numbers (1700-1955) versus the fit of ASTAR Model 9

(1720-1920). The yearly sunspot numbers (1700-1719) were used for initialization.
The yearly sunspot numbers (1921-1955) were used to examine the prediction per-
formance of ASTAR Model 9 and other models of the yearly sunspot numbers.
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ltUmnated Normalized Priodogrom of the Sunspot De 2720-102M
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Figure 14. The estimated normalized periodogram, of the yearly Wolf sunspot numbers (1720-
1920) [top] versus the estimated normalized periodogram of ASTAR Model 9 (1720-
1920) [bottom]. The broad conclusion from the top periodogram is that there is a
rather diffuse cycle in the data with a period of about 11 years, and a longer period
of about 67 years.

Figure 20 is a graphical representation of ASTAR Model 9. Each column in

the plot represents an individual term in equation (38) that is identified along the plot's

horizontal axis, e.g., (1) represents the X, 1 term (second term of line one in equation (38))

while (1),(2) represents the 2-way interaction term between X,-, and X,-.2 (first term of

line two in equation (38)). The vertical axis defines the range of values of the yearly sunspot

numbers during the modeling period from 1720-1920. The plot lines (1-way interaction),

symbols (2-way interaction) and the combination of lines and symbols (3-way interaction)

define the range of yearly sunspot number values that permit a nonzero contribution to the

value of , by a term of the model. Located underneath the plot is summary information

of the contributions by each model term during the modeling period to include the number

(Num) of times each model term made a nonzero contribution to the value of 9, and
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Figure IS. The empirical quantile-quantile plot for the fitted v'alues of ASTAR Model 9 versus

the yearly Wolf sunspot numbers for the period 1720-1920. No obvious pattern
exists.
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Figure 16. The autocorrelation functions of the yearly Wolf sunspot numbets and ASTAR Model
9 for the period 1720-1920. The dominant cycle of period approximately 11 years is
clearly evident.
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Sunspot Data; (1720-1920) Residuals vs Time using MARS Model 9
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Figure 17. Fitted residuals from ASTAR Model 9 of the yearly Wolf sunspot numbers (1720-
1920) versus year [top]. Fitted residuals versus the fitted yearly sunspot numbers
from ASTAR Model 9 of the yearly Wolf sunspot numbers (1720-1920) fbottomj.
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Figure 18. The autocorrelation function (first 40 lags) of the fitted residuals for ASTAR Model 9
of the yearly Wolf sunspot numbers (1720-1920). There is no pattern of dependence
in the residuals. The confidence bounds are approimate, individual confidence
bands.
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Figure 19. The limit cycle for ASTAR Model 9 of the yearly Wolf sunspot numbers (1720-1920).

Telmtcycle is 137 years long with the indicated ascent and descent periods. The
limit cycle is generated using ASTAR Model 9 initialized with the yearly sunspot
numbers (1700-1719). The 'subcycles' have lengths of 10 or 11 years with 4 or 5
years per ascent period and 6 or 7 years per descent period.
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the minimum (Min), mean (Mean) and maximum (Max) values of each term's nonzero

contributions.

The key point for discussing a graphical representation for a model such

as that given in Figure 20 is that it can be used to analyze the use for and contribution

of each of the terms in an ASTAR model. For example, using the ASTAR model of the

yearly sunspot numbers given in equation (38) and graphically displayed in Figure 20, the

2-way interaction term (1),(4), which represents the term -. 032X-1(17.1 - X,- 4 )+, has a

nonzero contribution to the value of X, if and only if X,-. > 0 and X,- 4 < 17.1. Using

Figures 20 and 13 it can be seen that this term's maximum contribution arises when X_ 1

is at a yearly sunspot cycle peak and X,- 4 is in a yearly sunspot cycle trough. Thus the

purpose of this term is to initiate the downward turn of X1, to the next yearly sunspot cycle

trough. Another example is the 3-way interaction term (1),(2),(5), which represents the

term .004X,-_1(26.0 - X,- 2)+(X,-.s - 41.0)+. This term has a nonnegative contribution to

the value of X, if and only if X- 1 > 0, X-- 2 < 26 and XT-s > 41. Again using Figures 20

and 13 it can be seen that this term's maximum contribution arises when X_ 1 and X,-2

are in a yearly sunspot cycle trough and X-s is at a yearly sunspot cycle peak. Thus the

purpose of this term is to initiate the upward turn of X, to the next yearly sunspot cycle

peak. Likewise, the (1),(2) term has a large contribution when both X_ 1 and X- 2 are

high. Like the (1),(4) term, the (1),(2) term is used to initiate the downward turn of X1,

to the next yearly sunspot cycle trough. However, unlike the (1),(4) term whose number

of nonzero contributions to the value of X is severely restricted due to the threshold at

17.1, the (1),(2) term continues to drive . into the next trough until X,-2 S. 26. Similar

analysis can be performed on other model terms or combinations of model terms.

Other useful graphical displays for the ASTAR models of the yearly sunspot

numbers are the individual plots of each term's contribution to the value of 2, versus

sunspot number year. These plots complement Figure 20 and permit the comparison of the

magnitude and location of each term's contribution. In summary, the graphical displays

mentioned above provide a valuable analytical tool for studying nonlinear time series models

such as those developed with the ASTAR methodology.
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ASTAR Model 9 -- Sunspot Numbers (1720-1920)
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(1) (5) (9-0) (1).(4) (1).(2).(5)

Num 200 117 135 127 109 55 35
Min 1.34 .033 -15.2 -43.8 .01 -49.2 .028
Avg 43.8 8.58 -8.85 -8.28 13.36 -13.3 9.71
Max 148.2 15.6 -. 566 -. 014 62.4 -. 08 42.98

Figure 20. Graphical representation of ASTAR Model 9 given in Equation (38) of the yearly
Wolf sunspot numbers (1720-1920). Each column in the plot represents a term of
the model whose contributions to the value of XR is summarized underneath the
plot. Lines in the first three columns, labeled (1)and (5) and (9) define the range of
values for nonzero contributions to the value of X, by the linear terms X,,- 1 , X,- 5
or X,- respectively; symbols in the next three columns, labeled (1),(2) and (1),(3)
and (1),(4), define the range of values for nonzero contributions to the value of X,
by the I-toq interaction terms XI-IX.-2, X-IX.-3 and X,-IX.-4 respectively;
and in the last column the combination of lines and symbols define the range of
values for nonzero contributions to the value of X, by the S-way interaction term
X,-IX,-2X,--S8
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c. Sunspot Number Prediction using ASTAR Models

The predictive performance of ASTAR Model 9 (38) was investigated by

comparing its forward-step predictions with the forward-step predictions of other models

that were developed using the 221 yearly sunspot numbers from 1700-1920. These include

forward-step predictions (Moeanaddin, 1989) for the 35 yearly sunspot numbers from 1921-

1955 using the Full Linear Autoregressive, Bilinear Subset (Rao, 1984) and Self Exciting

Threshold, SETAR, (Tong, 1983) models. The Full Linear Autoregressive (39) and Bilinear

Subset (40) models used the 10 sunspots from 1700-1709 for initialization while the SETAR

(41) and ASTAR (38) models used the 20 sunspots from 1700-1719 for initialization.

Full Linear Autoregressive

32.55 + 1.216X._ 1 - 0.467X- 2 - 0.142X,- 3

91- +0.169X,- 4 - 0.147X-s + 0.054X,-6 (39)

-0.053X- 7 + 0.067X.-s -+ 0.113X._9

Bilinear Subset

6.886 + 1.501X,_ 1 - 0.767X- 2 + 0.115X,_ 9 - 0.014Xr_ 2 Cr-_

±1. = + 0.006X,-1s4,_ - 0.007X, 1_..- 3 + 0.006X,-4f,_ 3  (40)

+ 0.004X,- 1 ,- 6 + 0.004X-2C?- 4 + 0.002X?_ 3f._ 2

Self Exciting Threshold (SETAR)

10.544 + 1.692X,_1 - 1.159X.- 2 + 0.236X,- 3 + 0.150X_ 4

if X,-3 <36.6

7.804 + 0.743X,-i - 0.041X,.- 2 - 0.202X.- 3 + 0.173X,-4 (41)

-0.227X._s + 0.019X- 6 + 0.161X,- 7 - 0.256Xs(1

+ 0.319X,_9 - 0.389X,-Io + 0.431Xr_ 1 - 0.397X,- 12

if X,- 3 > 36.6
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The forward-step predictions for each of these models are obtained by fixing both the model

terms and coefficients during the entire prediction period. The mean sum of squares for the

errors of the predictions (PMSE) obtained by these models and ASTAR Model 9 are given

in Table 4.

TABLE 4. FORWARD-STEP PREDICTIONS OF THE YEARLY WOLF SUNSPOT NUM-
BERS: The mean sum of squares error &2, number of model parameters and the
predictive mean sum of squares error r2 (i) for the ith forward-step prediction for the
period (1921-1955) of the Full Linear Autoregressive (AR), Bilinear Subset, SETAR
and ASTAR models of the yearly Wolf sunspot numbers for the period (1700-1920).

AR Bilinear SETAR ASTAR

Model (Full) (Subset) Model 9

(Rao) (Tong)

&.2 199.3 124.3 153.7 114.1

Number of 10 11 19 14

Parameters

. (1) 190.9 123.8 153.9 132.5

&2,(2) 414.8 337.6 388.4 314.8

&.(3) 652.1 569.7 672.7 467.3

&(4) 797.3 621.3 641.2 415.1

0(5) 770.8 718.4 835.3 367.2

&,2(6) 786.4 732.4 900.7 408.0

&,2(7) 789.0 781.7 993.8 441.2

&,2(8) 827.8 833.2 1083.6 455.2

The performance of the ASTAR model for forecasting the yearly sunspot

numbers from 1921-1955 is a considerable improvement over the AR and Threshold models

for every forward step, and it is an improvement over the Bilinear Subset model for every

forward step except the first step. Also, it is interesting and surprising to note that the

predictive mean sum of squares error for the ASTAR model decreases in the fourth and fifth

step before increasing again. This phenomenon was also identified in subsequent analysis
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of other ASTAR models that have limit cycles. We attribute this interesting phenomenon

to the underlying limit cycle of the models (Tong, 1985, and Moeanaddin, 1989).

While the prediction of the yearly sunspot numbers for 1921-1955 is a con-

siderable improvement over the previous threshold and bilinear modeling efforts, it may be

difficult to justify using the kth forward-step prediction as a conditional expectation when

making the ith forward-step prediction of an ASTAR model with a threshold on X,_j and

i > k > j. Tong (1983, 1985) suggests, as one approach to this problem, 'moving the

trigger', i.e., prohibit a threshold from forming on a lagged variable with lag less than the

desired maximum forward-step prediction. Tong (1983) reported several TAR models that

'moved the trigger' and were used for prediction of the sunspot numbers. TAR Model

AS7133 (42) was developed with a threshold value on X,- 7 using the sunspot numbers

from 1700-1890 and used to obtain the forward-step predictions of the sunspot numbers

from 1921-1955 (Moeanaddin, 1989).

TAR Model AS7133

9.267 + 0.987X,- 1 - 0.307X,- 2 - 0.108X.- 3 + 0.166X-4

- 0.297X,-s + 0.285X,-e - 0.155X_7... - 0.17IX-s

+ 0.210X_ 9 - 0.041Xr-l 0 + 0.353Xr- 11 - 0.196X,- 12

X, = if Xf- 7 _5 58.55 (42)

26.159 + 1.577X,_i - 1.240X,- 2

if Xr- 7 > 58.55

To incorporate this idea, MARS was used to formulate several models of the

yearly sunspot numbers by 'moving the trigger'. This is simple to do since in the input

to MARS one can specify that the predictor variables are not permitted to have a knot

i.e., are linear if included. For this modeling effort the interest was to permit prediction

of approximately one sunspot number cycle. Thus the lagged variables with lag less than

or equal to eleven were not permitted to form knots. Note that the modeling effort was
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restricted to 1700-1890 to correspond to modeling efforts by Tong (1983) that also 'moved

the trigger'.

Table 5 gives the forward-step predictions from 2 ASTAR models created

using MARS with the restriction that thresholds were prohibited on X_ 1 thru X,-u.

These two new models both have a single threshold on X.- 14 and thus permit up to a 14

step ahead (full yearly sunspot cycle) forecast of the yearly sunspot numbers without the

difficulties discussed in the previous paragraph. Model GCV9-322 (43) has 8 coefficients

and includes a 4-way interaction term while Model GCV9-1028 (44) has 11 coefficients and

includes only linear and 2-way interaction terms.

ASTAR Model GCV9-322

10.760 + 1.326X7 - 1 - 0.714X- 2

-0.003X,-lX- 12 + 0.568X,- 2X,-11 (43)

+ .0002XT- XT-e(XT-1 4 - 73.9)+

-. O00003Xr-lXr-2Xr-s(X-14 - 73.9)+

ASTAR Model GCV9-1028

-11.256 + 1.257Xr- 1 + 0.576X,_9

-r 0-.08X,_sX,_ 2 + 0.002X,_ 2Xr,_ - 0.002X,_ 2X,_S (44)

+ 0.O03X 7 _2X1--11  0.006X_sX_ - O.O03Xr_9Xr_1o

+ 0.O04XI(X_ 14 - 60.0)+

As with the previous predictions of the yearly sunspot numbers from 1921-

1955 with ASTAR Model 9 (Table 4), the Bilinear Subset model has the best MSS for the

first forward-step prediction. However, from the second forward step for GCV9-322 (third

forward step for GCV9-1028), the ASTAR models have the best predictive mean sum of

squares error and are again a considerable improvement over the Full Linear Autoregressive,

Bilinear Subset and SETAR models for the period 1921-1955. Also, again note that the
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TABLE 5. FORWARD-STEP PREDICTIONS OF THE YEARLY WOLF SUNSPOT NUM-
BERS: The mean sum of squares error &', number of model parameters and the
predictive mean sum of squares error &2(i) for the ith forward-step prediction for
the period (1921-1955) of the AR, Bilinear Subset, SETAR and ASTAR models of
the yearly Wolf sunspot numbers. Here, in contrast to the ASTAR model used for
the results in Table 4, thresholds were not permitted for lagged predictor variables in
MARS unless the lag was greater than eleven. The modeling period for the AR and
Bilinear Subset models is (1700-1920) while the modeling period for the SETAR and
ASTAR models is (1700-1890).

AR Bilinear SETAR ASTAR ASTAR

Model Subset AS7133 Model Model

(Rao) (Tong) GCV9-322 GCV9-1028

&2 199.3 124.3 152.3 155.5 149.9

Number of 10 11 17 8 11

Parameters

&,2(1) 190.9 123.8 161.9 158.3 205.1

&(2) 414.8 337.6 362.6 333.4 425.0

&(3) 652.1 569.7 593.2 515.3 472.2

&.(4) 797.3 621.3 650.1 449.1 416.6

&,2(5) 770.8 718.4 613.2 404.2 402.6

&.(6) 786.4 732.4 584.8 377.7 384.0

,(7) 789.0 781.7 508.1 373.4 378.6

&2(8) 827.8 833.2 531.8 372.8 391.0

&'2(9) 862.1 900.6 518.8 319.1 389.8

'(10) 895.6 961.9 520.9 302.7 379.5

.(11) 982.9 1013.8 563.0 297.3 371.0

&,(12) 1168.5 1139.2 650.5 361.9 419.1
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predictive mean sum of squares error for the ASTAR and SETAR models decrease after

several forward steps before increasing again.

Moeanaddin (1989) used the AR, Bilinear and SETAR models for 'risky'

prediction for the roughly 2 yearly sunspot cycle period from 1956-1979. This prediction

period is 'risky' because it includes an 'abnormal' jump in the yearly sunspot numbers from

38.0 in 1955 to 141.7 in 1956. The forward-step PMSE's of the SETAR models are slightly

better than the MSS's of the ASTAR models for this period, although the potential of the

ASTAR models developed in this chapter were not fully explored. However, the bilinear

model's predictive performance is rather explosive. Moeanaddin (1989) indicates that the

collapse of the bilinear models prediction may be due to its non-invertibility and the effect

of the influential observation in 1956.

G. SUMMARY

MARS is a new nonparametric regression modeling methodology, due to Friedman,

that utilizes low-order regression spline modeling and a modified recursive partitioning

strategy to exploit the localized low-dimensional behavior of the data used to construct

1(z). Although MARS is a computationally intensive regression methodology, it provides a

systematic methodology for deriving nonlinear threshold models for high-dimensional data

that are naturally continuous in the domain of the predictor variables, and can have multiple

partitions and predictor variable interactions.

By letting the predictor variables in MARS be lagged values of a time series, one

obtains an adaptive spline threshold autoregressive (ASTAR) model, which is a new method

for nonlinear modeling of time series that extends the threshold autoregression methodology

developed by Tong (1985). A significant feature of ASTAR when modeling time series data

with periodic behavior is its ability to produce continuous models for the regression function

with underlying sustained oscillations (limit cycles). An initial analysis of the yearly Wolf

sunspot numbers (1700-1890) and (1700-1920) using ASTAR produced several models with

underlying limit cycles. When used to predict the yearly sunspot numbers (1921-1955), the

ASTAR models are a significant improvement over existing Threshold and Bilinear models.

An important aspect of any overall regression modeling effort is the interpretation

and analysis that answers questions about the model's behavior and reveals relationships
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between the response variable (output) and predictor variables (input). However, the func-

tional form of an ASTAR model, with its combination of different predictor variables and

multiple threshold values, makes its straightforward interpretation and analysis difficult.

In this regard a graphical representation was developed to permit the interpretation and

analysis of ASTAR Model 9 of the Wolf sunspot numbers. Further enhancements are ob-

tained by integrating color in the graphical representation. It was shown that this graphical

representation can be used to analyze the use for and contribution of each of the terms in

an ASTAR model.
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HI. SEMI-MULTIVARIATE NONLINEAR MODELING OF TIME

SERIES SYSTEMS USING MULTIVARIATE ADAPTIVE

REGRESSION SPLINES (MARS)

A. INTRODUCTION

While ASTAR models of univariate time series certainly have widespread applicability,

the identification of semi-multivariate threshold autoregressive models that consider the

complex interactions within a time series system would have even greater applicability. In

this chapter the ASTAR methodology developed in Chapter II is extended to the semi-

multivoriate ASTAR modeling of a time series system. This builds upon semi-multivariate

threshold autoregressive (TAR) modeling by Tong et al. (1985). Thus MARS is used

to model a single response variable of a time series system using predictor variables that

are the lagged values of both the response and input time series. For example, for r =

1,2,.. .N, let {Y 7} and {Z) be time series that represent system inputs and {Xrl be a

times series representing the system output. The set of possible predictor variables for this

semi-multivariate time series system are X-l,... , Xr- ; Y, ... , Y, and Zr, .. . , Zr-d ,

where the maximum lags di, d2 and d3 are not necessarily equivalent. Also, d, + (d2 + 1) +

(d3 + 1) = p, the total number of predictor variables. If MARS is applied to this system of

predictor variables the result is a semi-multivariate ASTAR model that seems well suited

for taking into account the complex interactions among the multivaiate, cross-correlated,

lagged predictor variables of a time series system. The analysis of an Icelandic river using

past riverflow, temperature and precipitation to develop semi-multivariate ASTAR models

extends earlier TAR modeling of this Icelandic riverfiow. Note that the same problem for

normal multivariate linear time series processes such as ARMA models may be treated by

Kalman filtering (see, e.g., Gelb, 1974). However, here we are not concerned with complete

multivariate models, in the sense of Box and Tiao (1977) and Tiao and Tsay (1989).
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B. SEMI-MULTIVARIATE NONLINEAR TIME SERIES MODELING

USING MARS

There are numerous semi-multivariate times series systems that appear well suited

for analysis using the MARS methodology, such as sea surface temperatures using lagged

temperature, surface winds and time as predictor variables (Breaker and Lewis, 1985; Alt-

man, 1987) or riverflow using lagged river flow, temperature and precipitation as predictor

variables (Gudmundsson, 1970; Tong et al., 1985). One possible source of nonlinearity in

the riverflow system might occur due to the change in temperature above and below freez-

ing. Below freezing, precipitation (snow) does not 'runoff' as rapidly as precipitation (rain)

at higher temperatures. Other applications exist for any multivariate times series system

with suspected nonlinear behavior, if the objective is to model a single output stream given

multiple input streams to the system. In particular in Chapter IV, a series of sea surface

temperatures will be analyzed. What is of more interest, as noted above, is to model the

current sea surface temperatures as a function of lagged sea surface temperatures, lagged

wind shear (wind velocity squared) and lagged wind direction.

To provide a framework for the semi-multivariate time series model, suppose that for

T = 1,2,... ,N, {YI} and {Z,) denote the input time series and {X,) the output time

series for a time series system we wish to model. The complete description for the general

form of a semi-multivariate time series model is very complex. However, using the notation

11 (from Tong, 1985) to separate the possible predictor variables of each different time series

and following (1), we can nominally describe X, with the semi-multivariate time series

tegression model

X, f (111 XT.I ,X,- 2,. . .,X-d 1 1 YY,....l,. -,YT-d 2 11 Z,, ,Z7...1,..., Zr-d) + E,,(45)

where f(.) represents some functional form of its argument, 1 denotes a model constant,

and the maximum lags dl, d2, and d3 are not necessarily equivalent. Also, Y and Z,, the

current values of the predictive time series, may or may not be included in (45), depending

on the time series system and the use for which the model is to be put. Generally, prediction

of X, at r would preferably be done without the knowledge of Y, and Z7 . This is because

if X, is measurable, it will generally be known only when Y and Z, are finally known.
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Both Tong (1985) and Tsay (1989) suggest a methodology for semi-multivariate TAR

modeling that follows the TAR methodology for a univariate time series, i.e., identification

of linear semi-multivariate autoregressive time series models in each disjoint subregion of

the predictor variable space. For example, their notation for a very simple two-subregion

semi-multivariate TAR model based on a single partition in the space of all the predictor

variables at, say, Z, = 3 is{ (0.5 111.111 -2.7,1.111 4.3,-2.8) if Z, _ 3

(2.3 10.1,-0.2 111.7 II -0.1,2.1) if Z, > 3,

which represents the model

f0.5 + 1.1X,- 1 - 2.7Y, + 1.1 Y,_1 + 4.3Z, - 2.8ZTl if Z, _< 3
XT= (46)

2.3 + O.1X,_ - 0.2X.- 2 + 1.7Y - 0.1Z, + 2.1Z-_. if Z, > 3.

The semi-multivariate TAR methodologies of Tong (1985) and Tsay (1989) focus on uni-

variate and bivariate scatterplot analysis and on the evaluation of empirical percentiles of

preselected threshold variable candidates. These methods are also permitted with MARS.

However, the predictor variables of a time series system may possess physical behavior not

readily apparent when we restrict our modeling methodology to the above approach. The

key point is that Tong's and Tsay's methods are time consuming, generally limited to one

or two dimensions and may not be sufficient for identifying changes in the physical behavior

of a nonlinear time series system. Thus, a semi-multivariate TAR model is still burdened

with the limitations of a univariate TAR model, i.e., a threshold model created with the

piecewise linear models from each disjoint subregion of a domain D of the predictor vari-

ables. Also the TAR model is usually discontinuous at each subregion boundary (threshold)

and is liiaited to a small number of thresholds, most often using only one variable, dui to

the difficults associated with the threshold selection process.

The MARS methodology supplemerms Tong's (1985) and Tsay's (1989) approach by

admitting a more general class of continuous nonlinear semi-multivariate threshold models

than permitted with the semi-multivariate TAR methodology, and by providing a more
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systematic (automatic) way of fitting the model. The methodology for developing this class

of nonlinear semi-multivariate threshold models is called SMASTAR (Semi-Multivariate

Adaptive Spline Threshold Autoregression). Following Chapter II, the fact that one obtains

from the MARS algorithm a more general class of continuous nonlinear semi-multivariate

threshold models than permitted with semi-multivariate TAR methodology (for example a

model such as (46)) can be shown using a simple example.

Let X, be a time series we wish to model with the lagged predictor variables X,-,

X,- 2, Y.-I, Y- 2 , Z,-I and Z,- 2. Also, let the notation (U-t)'+ represent (t-U)+ and (U-

t)+ where (u)+ = u if u > 0 and 0 otherwise. Extending the example for the ASTAR time

series model developed in Chapter II, each forward step of the MARS algorithm selects one

and only one set of new terms for the SMASTAR time series model from the candidates

specified by previously selected terms of the model. For our example problem the sets of

candidates in the initial forward step of the MARS algorithm are

(X,_. - t-)' or (- -2- t.)± or

(Yr--l - t;)+ or (Y,- 2 - t;)+ or

(Z,-l - t,)+ or (Z,- 2 - t.)+, (47)

where t,t; and t are unknown partition points (thresholds) in the range of their respective

lagged predictor variable. For our example problem, assume that the MARS algorithm se-

lects the lagged predictor variable X,- 2 with threshold value t = t1 , i.e., (X- 2 - tl)+ and

(tI - X,- 2)+ are the initial terms (other than the constant) in the SMASTAR time series

model. The sets of candidates in the second forward step of the MARS algorithm includes

all univariate candidates in (47) and the new sets of multivariate candidates (interactions):

(X'--1 - t.)+(Xr- 2 - tl)+, or (X.-l - t,)+(tl - X,- 2 )+, or

(Yr.- - t;)+(X.- 2 - tl)+, or (Y._ - t;)(ti - X.- 2 )+, or

(Y,, 2 - t;)+(X,_2 - ti)+, or (Y,_2 - t;)*+(t, - X,- 2 )+, or

Zr-I - t.) +(X-2 - tl)+, or ( Z.-I - t*)+(tl - Xr-2), or
(Z,_-2 - t:)+(X,_2 - tl)+, or ( Z,_-2 - t*)+(tl - Xr_2)+, (48)
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due to the initial selection of (X,- 2 -tl)+ and (h -X,- 2)+ as terms in the SMASTAR time

series model. One and only one of the terms from (47) or (48) is selected for inclusion in

the model in the next forward step of the MARS algorithm. It follows that SMASTAR time

series models could have multiple thresholds on one variable, say X,- 2 in our example, by

again selecting (X,--2  t.*)+ in (47) for some new partition point ti ti. The forward-step

algorithm continues at each step by selecting the set of univariate or multivariate terms

that, for a given threshold t*, t; or t, discovered using exhaustive search, most contributes

to "improving" model fit. The sets of candidates for each subsequent forward step of the

SMASTAR algorithm is nondecreasing in size and is based on previously selected terms of

the model. As discussed in Chapter II the forward-step algorithm is followed by a backward-

step algorithm that trims excess terms of the model that no longer sufficiently contribute to

the model fit. And again, both the forward and backward steps of the algorithm use GCV"

(23) to evaluate model fit versus model complexity (Chapter V discusses alternative model

selection criteria).

Again, for r = 1,2,..., N, let (Y) and {Z 7} denote the input time series and {X.

the output time series for a time series system that we wish to model. Let the p predictor

variables in MARS for the rth value in a time series {X,.} be; X,- 1 , X,- 2 , ... , X.-d,, Y,

Y-,..., Yr-d, and Z., Z,.-,, ... , Z_.., which we represent as Xdl_, Yd2+ ,and ,

respectively. Following (30), the functional form of the SMASTAR model that estimates

X, is

S CK..,.yd, Y-d2+1 Zd3+1 49
r-11 -r I Z'r (49)

j=1

so that Xf is an additive function of the product spline basis functions

{K,(Xdl d2+l ,Z3+ )}S associated with the subregions {Ri) =1. As with the AS-

TAR time series model (31), the functional form of the SMASTAR time series model may

be expanded using the ordered sequences of truncated spline functions (20 and 21) that

define each product spline basis function.

Let a and b be dummy variables that index the ordered sequence of truncated spline
fT, - [dl I yd2%l, Zd3+l])$

functions Tav&(X-.i-2+,Za.+l)J such that 0 < a < b < j. Also to account for the

additional complexity of a multivariate time series system let ri = (±v, t, 1) represent a 3-
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tuple associated with the truncated splne function T,rb(Xp._l) whose components identify:

±, the direction of the truncated spline (left or right); v, the specific predictor variable; t,

the partition point; and 1, the input time series used as predictor variables. Given this

additional notation the functional form of the SMASTAR time series model for the -rth

value in a time series {X1. using this expansion is

S
X,. = tc f] -)]+ (50)

j=I T.,rbeK

where the argument T-1, y ,--7 of T,rb(X' r--,Y2+1,Zd3+1) and
Kj(Xdl Yd 2 +1, Zd3+ 1) is suppressed for simplicity. Again, note that the truncated spline

functions act in only one dimension although their argument is a vector of predictor vari-

ables.

By modeling a time series system using the MARS algorithm, we overcome some of

the limitations of the semi-multivariate TAR modeling approach. The MARS methodology

provides a systematic procedure for deriving a nonlinear semi-multivariate time series model

that is naturally continuous in the domain of the predictor variables. As shown in Chapter II

and later in Chapter IV with the yearly Wolf sunspot numbers and Granite Canyon data

sets, ASTAR models of univariate time series can possess multiple thresholds and high level

predictor variable interactions. This construction has now been extended to the multivariate

setting with SMASTAR models, which can also possess multiple thresholds and high level

predictor variable interactions. However, now the threshold values and predictor variable

interactions can take place among the cross-correlated, lagged predictor variables of a semi-

multivariate time series system. In contrast, the semi-multivariate TAR methodologies of

Tong (1985) and Tsay (1989) focus on scatterplot analysis and the evaluation of empirical

percentiles of preselected threshold variable candidates, which is time consuming and may

not be sufficient for identifying changes in the physical behavior of a nonlinear time series

system. Also the semi-multivariate TAR model is still burdened with the limitations of

a univariate TAR model, i.e., a discontinuous threshold model created with the piecewise

linear models from several disjoint subregions of a domain D of the predictor variables.
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1. Semi-Multivariate Non Linear Threshold Modeling of the Vatnsdalsa River

As an illustration of SMASTAR's ability to model an actual semi-multivariate

times series system, the riverflow (Tong, 1985) for the Vatnsdalsa River in Iceland from

1972 to 1974 is analyzed. A riverflow at a given location and time is an output of a complex

time series system with inputs that include aspects of the geography, geology, meteorology

and topography within the river's region of flow. Extensive literature is available on the

modeling complexities of riverflow and will not be revisited here other than to state that

the use and control of riverflow is of great concern in many countries of the world. Also,

riverfiow data generally has a very non-normal distribution, in part because of the nonlinear

seasonal variations of the system variables and in part because of the difficulty in capturing

all of the influential variables within the modeling effort. Lawrance and Kottegoda (1977)

provide an excellent historical review of statistical hydrology and discuss stochastic modeling

of riverflow with the goal that "... models should be able to reproduce, in simulation,

sequences of flows or lake levels or rainfalls, which are statistically indistinguishable from

the relevant historical sequence." This prescription in essence permits prediction and the

study of physical changes that can affect the hydrological system, e.g., a dam in the case of

a riverflow system.

The Vatnsdalsa riverflow data, Figure 21, consists of the river's average rate

of daily flow (Xt) in m3/sec., the daily precipitation (Yt) in mm, and the average daily

temperature (Zt) in *C, at the Hveravelllr meteorological station in Iceland for the period

from 1972 to 1974. The range of values for daily riverflow for this period is 3.67 to 54.0

m3 /aeC., with a mean value of 8.94 m3/sec.; the range of values for daily precipitation

for this period is 0.0 to 79.3 mm, with a mean of 2.51 mm; the range of values for daily

temperature for this period is -22.4 to 13.9 *C with a mean value of -. 440C. Both the

riverflow and temperature are highly autocorrelated times series with lag 1 correlations of

.92 and .90 respectively. The precipitation record is actually translated forward by one day

due to the difference in the time during the day for recording the precipitation data and

the time during the day for recording the temperature and riverflow data. An extensive

discussion of the Vatnsdalsa riverflow system is provided by Gudmundsson (1970) and Tong

et al. (1985).
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Figure 21. The record of diy Vatndals riverfow, temperature and precipitation for 1972
to 1974 taken at the Hveravellir meteorological station in Iceland for the period
from 1972 to 1974. The range of values for daily riverflow for this period is 3.67
to 54.0 m/sec., with a mean value of 8.94 mn3/sec.; the range of values for daily
precipitation for this period is 0.0 to 79.3 mam, with a mean of 2.51 mam; the range
of values for daily temperature for this period is -22.4 to 13.9 *C with a mean value
of -. 44*C. The precipitation record is actually translated forward by one day due
to the difference in the time during the day for recording the precipitation data and
the time during the day for recording the temperature and riverflow data.
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Although the length of the riverflow data is relatively short, 1096 days, it does

provide a basis for SMASTAR model development and analysis. The primary interest for

modeling the Vatnsdalsa riverflow with MARS was to determine if MARS could produce

reasonable SMASTAR models in a semi-multivariate time series setting, and if so, could the

SMASTAR model identify reasonable nonlinear structure in the riverfiow data, e.g., changes

to riverflow due to temperatures above and below freezing? Finally, could the SMASTAR

model be used for prediction of riverfiow one day ahead?

Graphical analysis of the riverflow data, Figure 21, reveals an extremely high

riverflow that occurs each spring. Precipitation that falls in the form of snowfall during

the winter accumulates until the temperature rises sufficiently in the spring to release it

to the riverfiow system. Note that the high riverflow corresponds to the general rise in

temperature during the early months of each year. Also, a considerable shift in the overall

riverfiow occurs in 1974 that is not evident during the previous two years. The spring

riverflow during 1974 is higher and of longer duration than the spring riverflows for the

previous two years. This surge gives way to the extremely low riverflow in the latter half of

1974, that again is not characteristic of the same period riverflow for the previous two years.

These severe changes in the riverfiow structure for 1974 can be attributed to a combination

of extremely high rainfall and the rapid warming of the snowpack that occurred earlier in

1974 than in the previous two years.

The empirical density functions for the riverflow [top], temperature [middle] and

precipitation [bottom] data are shown in Figure 22. This figure should be interpreted with

the understanding that the data is dearly seasonal. The y-axis scale (density) of the plots

are equal while the x-axis is scaled for each time series and reflects the range of each

time series for the years 1972-1974. The empirical density function of the temperature is

relatively symmetric while the empirical density function of the riverflow and temperature

data are extremely skewed. The skewness in the precipitation data is a result of the heavy

but infrequent precipitation that occurs each year. The skewness in the riverflow data can

be attributed to the high riverfiow that occurs each spring. The skewed distributions of

these data sets suggest the possible use of transformations for symmetry (normality) and

variance stabilization to moderate the influence of the extreme values. Transformations

were considered for the precipitation data. However, riverflow is the output stream that we
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are modeling. Therefore, we chose to deal directly with this data to avoid the difficulties

associated with inverse transformations for purposes of analysis and prediction.

Many other modeling methodologies could be used for modeling this type of

semi-multivariate hydrological data. One method, previously discussed, is to develop semi-

multivariate TAR models for various regions of the predictor variable space. The semi-

multivariate TAR modeling effort of the Vatnsdalsa River data is briefly discussed in the

next section. Other methods consider models using a fixed signal with noise. However,

as with the yearly Wolf sunspot numbers, attempts to model the data with a fixed cycle

period signal plus (possibly correlated) noise have failed because the cyclical component in

the spectrum for this riverfiow system is quite spread out. In particular, using Figure 21,

note the size and shift in time of the Vatnsdalsa's riverflow that takes place in the spring

of 1974, as compared to the Vatnsdalsa's riverflow during the spring for the previous two

years.

a. TAR and SMASTAR Models of the Vatnsdalsa River (1972-1974)

Tong et al. (1985) considered a series of semi-multivariate linear and TAR

time series models for the Vatnsdalsa ri-°erflow data (1972-1974). Their goal, to develop

nonlinear models for purposes of simusa.on along with establishing relationships between

riverflow and important meteorological variables met with limited success due to the lim-

itations of the TAR methodology. Also, the TAR models included Y and Z?, i.e., same

day precipitation and temperature. Although a model that includes Y and Z, does peimit

analysis of the "immediate" influence of temperature and precipitation on riverflow, it also

essentially prohibits the use of the model for riverflow prediction. Several semi-multivariate

time series models from Tong et al. (1985) are of interest.

The first model from Tong et al. (1985), Tong Model 1 of the Vatnsdalsa

river system, shown at Figure 23, is the ordinary semi-multivariate linear time series model

for riverflow during 1972 with only precipitation and temperature as the system inputs, i.e.,

without lagged riverflow as a model predictor variable. Tong Model 1 is

Xr = 9.40 + 0.17Y, + 0.11Y-1 - 0.07Z, + G, (51)
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Figure 22. The empirical density functions of the riverfiow, temperature and rainfall data for the
Vatnsdalsa riven low system for 1972 to 1974 taken at the Hveravellir meteorological
station in Iceland. The y-axis scale (density) of the plots are equal while the z-axis is
scaled for each time series and reflects the range of each time series for the years 1972-
1974. The empirical density function of the temperature is relatively symmetric. In
contrast, the empirical density functions of the rivenilow and temperature data are
extremely skewed. The skewness in the precipitation data is a result of the heavy but
infrequent precipitation that occurs each year, while the skewness in the riverflow
data can be attributed to the high riverflow that occurs each spring. This figure
should be interpreted with the understanding that the data is clearly seasonal. The
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where c is assumed to be Gaussian white noise and the standard error of the fitted residuals

a, = 4.64. The poor quality of this linear model is revealed by its inability to capture the

sharp structure of high riverflow during the spring runoff. Also from Tong et al. (1985),

the magnitude of a, is larger than the average value of X, and it is difficult to explain the

rational for the negative coefficient on the precipitation variable Z,. The shortcomings of

this model indicate the importance of lagged riverflow to help capture the structure of the

riverflow system.

The second model from Tong et al. (1985), Tong Model 2 of the Vatnsdalsa

river system, shown at Figure 24, is the ordinary semi-multivariate linear time series model

for riverflow during 1972 with precipitation, temperature and riverflow as the system inputs.

Tong Model 2 is

X, = .73 + 1.12X_1.. - 0.23Xr- 2 + 0.12X,- 3 - 0.09X,-4

+ 0.09Y, - 0.03Y,_1 - 0.04Y- 2  (52)

+ O.01Z, + 0.074-.1 - 0.06Z,- 2 + 0.02Zr_3 + Cr,

where c is assumed to be Gaussian white noise and the standard error of the fitted residuals

or = 1.68. To simplify the presentation of more complex semi-multivariate models that

follow, using notation from Tong (1985), Tong Model 2 may be rewritten as

Xt = (.73 II 1.12,-0.23,0.12,-0.09

I1 0.09,-0.03,-0.04

II 0.01,0.07,-0.06,0.02) + c,

where 11 is used to separate the coefficients of the lagged predictor variables from the different

time series. The fitted values and residuals of Tong Model 2, shown in Figure 24, are a

considerable improvement over those for Tong Model 1, shown in Figure 23. The analysis

of Tong Model 2, using equation (52), reveals the immediate and lagged influence of all

three different predictor variables. Also, in the absence of present and lagged rainfall and

assuming that present and lagged temperatures are close to 00C, i.e., Y,, Y-, and Y,-2, and

Z,, Z,- 1 , Z,- 2, and Z,- 3 = 0, this model's riverflow reaches a steady state flow of about
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Vatnsdalsa River Data (1972)
(Tong Model 1)
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Figure 23. Vatnsdasba riverfiow data during 1972 versus the fitted (predicted) values (top) and
residuals (bottom) for the ordinary semi-multivariate linear time series model, Tong
Model 1, from Tong et al. (1985). Tong Model 1 uses precipitation Y7 -. , and tem-
perature Zt-, as system inputs i.e., lagged riverfiow XT-i is not used as a predictor
variable. The standard error of the fitted residuals, a, = 4.64, is larger than the
average value of the riverflow. The poor quality of this model's fit is revealed by its
inability to capture the sharp structure of high riverflow during the spring runoff.
This model reveals the importance of lagged riverflow to help capture the structure
of the riverflow system.
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9m 3/sec., which is reasonable based on the analysis of the riverflow data in Figure 21.

However, there are still several instances when the fitted values of Model 2 deviate from

the structure of the actual riverflow (the fitted values actually indicate negative riverflow).

These deviations occur most often during the period when the temperature is rapidly rising

during early spring and thus is indicative of the nonlinear relationships that exist among

the predictor variables in this time series system.

In response to the difficulties of the ordinary semi-multivariate linear time

series models, Tong et al. (1985) proposes several semi-multivariate TAR models for the

Vatnsdalsa riverflow system. The methodology for developing a semi-multivariate TAR

models was discussed at the beginning of Section B. The progressive use of this methodology

resulted in a final semi-multivariate TAR model from Tong et al. (1985), Tong Model 5 of

the Vatnsdalsa river system, using lagged riverflow X,-l,..., X-I 0 , lagged temperature

Y,..., Y,-Io, and lagged precipitation Z,...,Z,--. 0 , as the predictor variables. Using the

notation developed from (46) and (52), Tong Model 5 for the period 1972 to 1974 is,

(0.75 11.06,-0.26,0.09,-0.11,0.08

xt={ II 0.02,-0.03,0.01,-0.02 if Z, <5 -2,

-0.02, -0.01, -0.00, 0.01) + 4

(1.21 II 0.97,-0.29,0.04,0.11

= II 0.53,0.02,-0.02 if - 2 < Z,! _ 2,

II 0.03,0.12,-0.04,-0.02) + 4d

(1.97 11.38,-0.70,0.47,0.02,-0.19,-0.02,0.34,-0.23

- II-0.59,0.07,-0.11,-0.05,0.07,0.13,-0.25 if 2 < Z, _5 5,

II 0.03,0.03,-0.01,0.04,-0.03,-0.04,0.13, 0.01) + 3

[(0.59 11.22,-0.49,0.30,-0.17,0.27,-0.26,0.11

- I -0.02,-0.02,0.01,-0.01,0.02,-0.04 if Zr > 5, (53)

I0.01,0.01, -0.01, -0.01,0.01, -0.02) + d4

where each regions errors, {fe'li, are assumed to be Gaussian white noise sequences that

are independent of each other and where the standard error of the pooled fitted residuals
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Vatnsdalsa River Data (1972)
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Figure 24. Vatnsdalsa riverfiow data during 1972 versus the fitted (predicted) values (top) and
residuals (bottom) for the ordinary semi-multivariate linear time series model, Tong
Model 2, from Tong et al. (1985), using precipitation Y-i, temperature Zf,_ and
riverflow X,- as system inputs. The standard error of the fitted residuals a, = 1.68.
The fit of this model is a considerable improvement over Tong Model 1, Figure 23.
However, there are still several instances when the fitted values of the model deviate

from the structure of the actual riverfiow (the fitted values actually indicate negative
riverfiow). This occurs most often during the period when the temperature is rapidly

rising during early spring and is indicative of the nonlinear relationships that exist

among the predictor variables in this time series system.
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is ac = 1.69m3/sec. Tong Model 5 uses 73 parameters in four disjoint subregions of the

predictor variables that are described by the univariate thresholds, -2,2 and 5 'C, on the

lag 0 temperature variable Z,.

Figure 25 is a plot of the fitted values (top) and residuls (bottom) for

Tong Model 5 of the Vatnsdalsa River system. Tong Model 5 appears to capture the

overall structure of the riverflow data within each disjoint subregion described by the model.

Figure 26 contains plots of the autocorrelation [top] and normalized cumulative periodogram

[bottom] of the fitted residuals from the second subregion of Tong Model 5 (-2 < Z, < 2).

If the fitted residuals of Tong Model 5 are truly independent then the fitted residuals in each

of the four model subregions should also be independent. The fitted residual autocorrelation

plot, with approximate individual 95% confidence intervals for zero correlation, shows that

significant short term residual autocorrelation still exists. Also, the normalized cumulative

periodogram plot, with a reference line for the normalized spectrum of Gaussian white noise

and 90% Kolmogorov-Smirnov (K-S) bounds, shows that we should reject the hypothesis

that the fitted residuals from the second subregion are Gaussian white noise. Note that

these results are similar for the other subregions of the model.

In summary, althovgh Tong Model 5 appears to capture the overall struc-

ture of the riverflow data, this and other semi-multivariate TAR models of the Vatnsdalsa

riverflow system were unable to model the data in such a way as to produce riverflow data

with Gaussian or even uncorrelated residuals. This in conjunction with the enormous size

of this semi-multivariate TAR model (73 parameters) may reflect the inability of the TAR

methodology to capture the complex predictor variable interactions present in this river-

flow system. Note that the maximum lag of a time series used for predictor variables in a

semi-multivariate TAR model, e.g., equation (53), may be different from subregion to sub-

region. However, within a subregion the semi-multivariate TAR model is of full size, i.e., all

autoregressive terms for each input time series up to the maximum lag are inclded. Thus

there is no subset selection of the predictor variables in the semi-multivariate TAR model.

In contrast, the SMASTAR methodology permits subset selection of the lagged predictor

variables used from each input time series.

Given the preliminary analysis of the Vatnsdalsa riverflow system and the

semi-multivariate TAR modeling effort, the MARS algorithm was used to develop SMAS-
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Vatnsdalsa River Data (1972-1974)
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Figure 25. Vatnsdalsa riverflow data for the period 1972-1974 versus the fitted (predicted) val-
ues (top) and residuals (bottom) for the final semi-multivariate TAR model, Tong
Model 5, from Tong et al. (1985). The semi-multivariate TAR model for the river-
flow at time r, X 7 , is a function of lagged riverflow X-j for j = 1,..., 10, and
precipitation Y7-d, and temperature Z,_.. for i = 0,..., 10. The final model con-
tains 73 parameters in 4 disjoint subregions that are described by the 3 temperature
thresholds on Z7 at -2, 2 and 5 *C. The standard error of the pooled fitted residuals
o, is 1.69 m3/aec. The use of Y, and Z. in the TAR model essentially prohibits the
use of the model for prediction.
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Figure 26. Fitted Residual Plots from Tong Model 5. The autocorrelation function (first 20
lags) and the normalized cumulative periodogram of the fitted residuals from the
second subregion, -2 < Z, < 2, of Tong Model 5 from Tong et al. (1985) of the
Vatnadalsa River system for the period 1972-1974. If the fitted residuals of the
model are truly Gaussian white noise then the fitted residuals from each subregion
should also be independent. Although the fitted values of the model, Figure 25,
appear to capture the overall structure of the riverflow data, the approximate 95%
individual confidence bounds show that some short term residual autocorrelation in
the second subregion still exists. Also, the cumulative normalized spectrum of the
fitted residuals falls outside the 90% K-S bounds for Gaussian white noise indicating
that we should reject the hypothesis that the fitted residuals are Gaussian white
noise. Note that the results of the fitted residual analysis from the other subregions
of Tong Model 5 are similar.
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TAR models for the Vatnsdalsa riverflow from 1972-1974 using 20 predictor variables; lagged

riverflow X,-, to X,- 5 , lagged precipitation Y to Y- 7 , with and without the natural

log transformation Y,*-i = in (1 + Y,-i), lagged temperature Z, to Z,- 5 , and a variable for

time of year effect. The models were initialized using 9 data values for each of the input

time series. The different models obtained occurred because of changes made to the user pa-

rameters of the MARS algorithm. These parameters include: MI = 3 and 4, the maximum

level of lagged predictor variable interaction; MS = 10, 15 and 20, the minimum separation

of a lagged predictor variable's partition points; and M = 30, the number of steps during

the forward-step algorithm. The SMASTAR models were identified with the SMASTAR

version of MARS 2.0 installed on an IBM3033 Computer using VS Fortran. Each of the

3-year models required from 1 to 2 minutes of CPU time. Also, the maximum lags of each

predictor variable time series were chosen because of predictor variable constraints within

the SMASTAR version of MARS 2.0. More predictor variables could have been modeled

using the adjustments to MARS 3.0 that will be discussed in Chapter IV.

The results of the modeling effort indicate that the SMASTAR methodol-

ogy appears well suited for analysis of semi-multivariate time series systems. Although it

will be discussed in more detail in the next section, 2 and 3 year SMASTAR time series

model terms appear to provide an indication of the underlying physical structure of the

riverflow system. Throughout the modeling effort it was interesting to note that although

the time variable was included as a predictor variable it was never selected as a final model

term. This in effect, implies that for this riverfiow system and data, the lagged predictor

variables have captured the relevant time dependent structure of the riverflow. Also, while

the (riverflow / precipitation variables) and (riverflow / temperature variables) frequently

developed interaction terms in the models, there were few direct interactions between the

temperature and precipitation variables. The SMASTAR models developed with the natu-

ral log transformation Y.-i = In (1 + Y,-i) and a maximum level of interaction of MI = 3,

appeared more stable than models developed without the transformation and with MI = 4.

As expected, SMASTAR models of the Vatnsdalsa river system are relatively complex when

compared to the ASTAR models developed for the yearly Wolf sunspot numbers in Chapter

II because interaction terms between cross-correlated predictor variables are permitted.
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Figure 27 shows the fitted values and residuals of SMASTAR Model ICE796

of the Vatnsdalsa riverfiow for the three years 1972 to 1974. Model ICE796 was selected as

a result of the overall fit of the model along with the analysis of its fitted residuals. Model

ICE796 was developed using a natural log transformation of the precipitation predictor

variable and was permitted to form 1, 2, and 3-way interactions during a maximum of

M = 30 forward steps of the forward step MARS algorithm. The minimum span between

threshold values for a single predictor variable was 15 data values. The model has 37

parameters that include 24 model terms (a constant term and 3 one-way, 8 two-way and 12

three-way interactions) and 13 threshold values (2 for X , -, 1 for X1- 3 ; 2 for Yr-J, 1 for

Y,-2, 1 for Y-s, 2 for Y- 6 ; 1 for Z,, 1 for Z,_!, 1. for Z1- 3 , and 1 for Z- 6). It can be

seen that Model ICE796 captures the overall structure of the riverflow data. The standard

error of the fitted residuals is a, = 1.39m 3/sec.

Analysis of the fitted residuals from this model, Figure 28, shows that no

short term residual autocorrelation exists in contrast to the short term residual autocor-

relation that was present in the TAR models. Also, the residuals could be considered

independent if they were normally distributed because the normalized cumulative spectrum

of the fitted residuals falls entirely within the 90% K-S bounds from the cumulative spec-

trum for Guassian white noise. However, the model residuals still appear non-Gaussian

with extremely heavy tails that can be expected with this type riverflow data (Figure not

shown). Note that SMASTAR Model ICE796 (37 parameters, , - 1.39m 3/sec.), Figure

27, has fewer parameters and smaller fitted residual variance than Tong's TAR Model 5 (73

parameters, a, = 1.69m 3/eec.), Figure 25, and also appears to better capture the structure

of the periods of high riverflow that occur each spring. Note that the vertical scales of the

plots in Figures 25 and 27 are the same.

b. Two Year SMASTAR Models of the Vatnsdalsa River for Prediction

In the previous section we discussed the development of TAR and SMASTAR

time series models for three years of the Vatnsdalsa riverflow. However, these TAR and

SMASTAR models included same day precipitation and temperature predictor variables,

Yr and Z?, which essentially prohibits the use of the models for riverflow prediction. In this

section our objective is prediction; MARS was used to develop SMASTAR models for only

731 days of riverflow and the remaining 355 days were used for prediction. It is unknown if
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Figure 27. Vatnsdalsa riverfiow data versus the fit (top) and the residuals (bottom) for SMAS-
TAR Model ICE796. The period of the modeling effort is 1972 to 1974. The SMAS-
TAR model for the riverfiow at time r, X, is a function of lagged riverfiow Xi,
for i = 5, precipitation Y..j for j = 0,. .. ,7, and temperature Z... for
k = 0, ... ,5 and a variable for time of year effect. The final model contains 37
parameters that include 24 model terms (a constant term and 3 one-way, 8 two-way
and 12 three-way interactions) and 13 threshold values (2 for Xt 1, 1 for XA-; 2
for Y,. 1 , 1 for Y,- 2 , 1 for Y,, 2 for Y,-. ; 1 for Z, 1 for Z0.., 1 for a-, and 1
for Z,-.). The standard error of the fitted residuals is a, = 1.39m3 /sec.

86



q

IC
1

7

NORMAIZED CUMULATIVE PEF40DOGRtAM

0 0.1 GU 0.3 0O4 OAI

Figure 28. Fitted Residual Plots from SMASTAR Model ICE796. The autocorrelation func-

tion (first 20 laps) (top] and the normalized cumulative periodogram [bottom] of the
fitted residuals from SMASTAR Model ICE796 of the Vatnsdalsa River system for
the period 1972-1974. The autocorrelation plot with approximate 95% individual
confidence bounds shows that no apparent autocorrelation exists in the fitted resid-
uals of Model ICE?96. Also, the residuals could be considered independent if they
were normally distributed because the normalized cumulative spectrum of the fitted
residuals falls entirely within the 90% K-S bounds from the cumulative spectrum
from Gaussian white noise.
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TAR models of the Vatnsdalsa riverflow were developed for purposes of prediction to provide

a comparison of the predictive capabilities between SMASTAR and TAR semi-multivariate

models.

The SMASTAR models were developed for the 731 days (2 years) of the

Vatnsdalsa riverflow during 1972 and 1973 using 20 predictor variables; lagged riverflow

X,.- to X,-.s, lagged precipitation Y_ 1 to Y-s, with and without the natural log trans-

formation Y,*_- = in (1 + Y,_-), lagged temperature Z_ 1 to ZI-6 , and a variable for time

of year effect. The first 9 data values of each time series were used for initialization. Note

again that during this modeling effort we excluded Y, and Z, (same day temperature and

precipitation) from the model to permit riverflow prediction for the last 355 days of river-

flow during the year 1974. Again different models occurred because of changes made to

the user parameters in the MARS algorithm. The parameter selections included: MI = 2,

3 and 4, the maximum level of lagged predictor variable interaction; MS = 10, 15 and 20,

the minimum separation of a lagged predictor variable's partition points; and M = 15, the

number of steps during the forward-step algorithm.

As with the 3-year modeling effort, the 2-year SMASTAR models appear

weU suited for analysis of semi-multivariate time series systems. Again, the (riverflow /

precipitation variables) and (riverftow / temperature variables) frequently developed inter-

action terms in the models, there were few direct interactions between the temperature and

precipitation variables. Also, the SMASTAR models developed with the natural log trans-

formation Y,*_j = ln(I+Y _i) and a maximum level of interaction of MI = 3, appeared more

stable (less likely to have abnormal changes in riverflow) than models developed without

the transformation and with MI = 2 and 4.

Equation (54) details SMASTAR Model ICE486 for the Vatnsdalsa riverflow

for the years 1972 and 1973. SMASTAR Model ICE486 was selected from among the other

models due to the overall model fit and the analysis of its fitted residuals. The presentation

of Model ICE486 in equation (54) is intended to take advantage of the tree-like structure that

naturally develops as a result of its truncated spline functions and of the stepwise selection

methodology within MARS. Model ICE486 for the Vatnsdalsa riverflow was developed

using the natural log transformed precipitation and was permitted to form 1, 2, and 3-

way interactions during a maximum of M = 15 forward steps of the forward step MARS
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algorithm. The minimum span between threshold values for a single predictor variable was

MS = 20 data values. Model ICE486 is

3.12 + 2.34(Y,._1 - 2.49)+

+ 1.20(X_ 1 - 3.98)+

- .200(X,_1 - 3.98)+(.833- Y,*-2)+

+ .038(X- 1 - 3.98)+(.833 - Y,*2 )+(14.5 - X,-4)+

- .116(X,_ 1 - 3.98)+(Y'_ 2 - .833)+

= + .174(X,_ 1 - 3.98)+'7.92 - (54)

- .014(X,_ 1 - 3.98)+(X,- 2 - 7.92)+ (3.2 - Z,-1)+

- .021(X,-, - 3.98)+(X,- 2 - 7.92)+(Z,,-, - 3-2)+

+ .008(Xr-i - 3.98)+(Xr- 2 - 7.92)+(2.4 - Z,-I)+

+ .012(X,_l - 3.98)+(X,- 2 - 7.92)+(Z,- 1 - 2.4)+

+ .008(X,_1 - 3.98)+(X,- 2 - 7.92)+(3.U - Z,-2)+

- .005(X_-I - 3.98)+(X,-, 2 - 7.92)+(Z,.- 2 - 3.3)+.

Model ICE486 has 21 parameters that includes 13 terms (a model constant

term and 2 one-way, 3 two-way and 7 three-way interactions) and 8 threshold values (1 each

on the lagged riverflow predictor variables, Xr-1, X--2, X,-4; lagged transformed precipi-

tation variables, Y. 1 , Y- 2; and the lagged temperature predictor variable, Z,- 2, and 2 on

the lagged temperature predictor variable, Z,- 1 ). The standard error of the fitted residuals

for the model is a, = 1.27m3 /sec.

Figure 29 shows plots of the fitted values and residuals of Model ICE486

for the Vatnsdalsa riverflow data during 1972 and 1973. Again, note that the precipitation

data used in Model ICE486 is the natural log transformed precipitation. Model ICE486

appears to capture the overall structure of the Vatnsdalsa riverflow. Note also, that the

minimum riverflow for the modeling period is 3.98 m3 /sec., which is higher than the min-

imum riverflow that occurs during the period we will be using the model for prediction.

The size of the 2-year Model ICE486 (21 parameters) and the standard error of the fitted
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residuals ,- = 1.27m 3/sec. when compared to the 3-year Model ICE796 (37 parameters)

with a = 1.39m 3/sec and 3-year Tong Model 5 (73 parameters) with , = 1.69m 3/sec,

provide some insight into the change in riverflow structure that occurs between the first two

years (1972-1973) and the last year (1974). The 3-year models (1972-1974) require many

more parameters than the 2-year model (1972-1973) to account for the change in riverflow

structure during 1974.

Model ICE486, Figure 29, appears to equally overfit and underfit the peaks

and troughs as it captures the general structure of the riverflow data. The fitted residuals are

examined using the normal probability plot (Figure 30) and the autocorrelation function and

estimated normalized periodogram plots (Figure 31). Analysis of the normal probability plot

(Figure 30) shows that the fitted residuals are slightly skewed with extremely heavy tails.

Note that the heavy tails could be an indication of different distributions for fitted residuals

from different regions of the predictor variable space. Again, unlike Tong Model 5 (25)

and the other TAR models discussed in the previous section, the autocorrelation function

for the fitted residuals reveals no evidence of short term autocorrelation. Also, we could

consider the residuals independent if they were normally distributed because the normalized

cumulative spectrum of the fitted residuals falls entirely within the 90% K-S bounds from

the cumulative spectrum for Gaussian white noise. However, as with these other models,

the fitted residuals still display a pattern of high residual values during periods of high

riverflow (Figure 29). This is evidence that we have still not captured all the relevant

predictor variables for the periods of high level riverflow.

c. Interpretation of the Two Year SMASTAR Model ICFA86

The tree-like structure of Model ICE486 (54) provides some insight into the

complex interactions of the riverfiow system. There are three major regions of interest

that may be identified by a visual inspection of the equation for the model. They include

riverflow when it falls below 3.98 m3/sec. (top line), along with the model terms that reflect

the direct contributions by the lagged transformed precipitation (term 2 of line 1 and lines

3, 4 and 5) and lagged temperature (lines 7 though 12) variables.

Since all terms in (54) that have the term (X,-- - 3.98)+ have value 0 when

the riverfiow falls below 3.98 m3 /sec., it is immediately apparent that Model ICE486, in
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Figure 29. The Vatnsdasa riverflow data for years 1972 and 1973 versus the fitted val-
ues (top) and residuals (bottom) for SMASTAR Model ICE486. The SMAS-
TAR model for the riverfiow at time r, X, was a function of lagged riverfiow
X,_ 1 to X-s, lagged precipitation Y,- to Y*-, i.e., the natural log trans-
formation Y,-i = n(l + Yr.-), lagged temperature Z,- 1 to ZT-s, and a vari-
able for time of year effect. The final model contains 21 parameters that in-
cludes 13 terms with 8 thresholds (1 each on the lagged riverfiow predictor vari-
ables; X,-I, X, -2 X.., thelaggedprecipitationpredicto aoiabl es, Y;-,..I, Y, -, and
the lagged temperature variable, Zr- 2 and 2 on the lagged temperature variable
ZI-.). The standard error of the fitted residuals a', was 1.27m 3/sec. The initial
nine values of each time series were used to initialize the model.
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Figure 30. The normal probability plot of the fitted residuals for SMASTAR Model 1CE486 of
the Vatnsdalsa River system for the period 1972-1974. The horizontal axis shows
the range of the fitted residuals from Model ICE486 while the vertical axis shows the
corresponding percentiles from the normal distribution. Analysis of this plot shows
that the fitted residuals from Model ICE486 are slightly skewed with the extremely
heavy tails that we might expect with this type riverflow data. Note that the heavy
tails could be an indication of different distributions for the residuals in different
regions of the predictor variables.
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Figure 31. Fitted Residual Plota from SMASTAR Model 486. The autocorrelation function
(first 20 lags) [top] and the normalized cumulative periodogram [bottom] of the fitted
residuals from SMASTAR Mode486 of the Vatndalsa River system for the period
1972-19T3. The antocorrelation plot with approximate 95% individual confidence
bounds shows that no apparent autocorrelation exists in the fitted residuals. Also,
we could consider the residuals independent if they were normally distributed because
the normalized cumulative spectrum of the fitted residuals falls entirely within the
90% K-S bounds from the cumulative spectrum for Gaussian white noise.
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this case, can be reduced to

X, = 3.12 + 2.34(Y,*_1 - 2.49)+. (55)

This indicates that when X-, < 3.98 and in the absence of lag 1 precipitation Y,*-, the

riverflow 9, will fall to a steady state level of 3.12 m3/sec., the model constant. Note

that the minimum riverflow during the modeling period was 3.98 m3/sec. Once the level

of riverl:.w is reduced to 3.12 m3/sec., then a minimum of Y,-I = 2.86, or Y-, = 16.42

millimeters of rainfall must occur to raise the riverflow level above 3.98 m 3/sec., the level

at which the other model terms can again 'kick in'. Also, anytime that lag 1 transformed

precipitation Y*- > 2.49 units (or lag 1 precipitation Y-, > 11.06 millimeters) there is

an immediate contribution to the riverflow as a result of this term.

The next region of interest for Model ICE486 (54) occurs when the lag 1

riverflow X,- 1 is greater than 3.98m 3/sec. and includes the terms of the model that possess

lagged transformed precipitation variables (lines 1, 3, 4 and 5 in the equation). These four

terms reflect the direct influence of precipitation of the riverflow system. For example,

note the positive coefficient for the first precipitation term involving Y*- (line 1) and the

negative coefficient for the last precipitation term involving Y*-2 (line 5). If significant

precipitation occurs (Y*- > 2.49) there is the immediate (first day) influence of the lag 1

term Y,*- (line 1) that is moderated the second day by the lag 2 precipitation term Y*-2

(line 5), if the lag 1 riverflow (X,-,) is greater than 3.98 ml/sec., i.e., the term on line 5

reflects the decrease in river runoff levels 2 days after a significant rainfall.

The last region of interest includes the last 6 terms of the model. These

terms reflect the direct influence of temperature on the riverflow system. The terms include

2 pairs of the lag 1 temperature variable terms Z-,l (lines 7 through 10), and 1 pair of

lag 2 temperature variable terms Z,- 2 (lines 11 and 12). The threshold values of 2.4, 3.2

and 3.3 OC provide the necessary switching mechanisms to correctly modify the changing

behavior of the riverflow system as it is affected by temperature. We can use coefficients

of these model terms and temperature extremes to characterize the behavior of the model

as it is affected by temperature. For example the coefficients for the model terms that

are active (making a nonzero contribution) during very low successive days of temperature
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(-.014, .008, .008) (lines 7, 9 and 11) and during successive days of rapidly increasing tem-

peratures (-.021, .012, .008) (lines 8, 10 and 11) in effect cancel each other out. Under these

conditions, temperature Z,_1 and Z,- 2 appears to show little direct influence on riverflow.

In contrast, during periods of very high successive temperatures (-.021, .012, -. 005) (lines

8, 10 and 12) and rapidly falling temperatures (-.014, .008,-.005) (lines 7, 9 and 12) the

temperature terms contribute to the model by forcing riverflow to lower levels. All of these

results are rapidly identified and seem reasonable.

d. Predictive Performance of SMASTAR Model ICE486

We now investigate the predictive performance of Model ICE486, developed

and discussed above. SMASTAR Model ICE486 (54) and the riverflow, precipitation and

temperature data during the year 1974 were used to perform a 1 day forward-step ahead

predictions of the Vatnsdalsa riverflow. Prediction of this riverflow for this period is a

formidable task due the extreme shift in time and magnitude of riverflow that occurs during

the spring along with the decrease in riverflow that occurs later in the year during 1974.

For example the minimum riverflow during the modeling period was 3.98 m 3/sec., while

the minimum riverflow during the prediction period was 3.67 m3/seC.

The prediction effort used two methods; the first method fixes both the

model coefficients and model terms (fixed model) as was done in Chapter II using ASTAR

Model 9 of the Wolf sunspot numbers to perform forward-step ahead predictions. The

second method fixes the model terms and permits daily updating of the model coefficients

(coefficient update) using the latest 731 data values of the riverflow system. For example the

1-step ahead prediction of Model ICE486 (54) at each value of r during 1974 using coefficient

update is obtained by first updating the model coefficients using the data X.-i, Y,-i and

Z.-i for i = 1,... ,731 and then making the 1-step ahead prediction. Updating the model

coefficients is just a simple linear regression step because the threshold values of each model

term are fired. This second method, coefficient update, was implemented to determine what

impact changes in riverflow structure during 1974 has on the fixed prediction model and

also because of the nonlinear behavior of the system.

Figures 32-34 contain plots of the actual riverflow versus 1-step ahead pre-

dictions and the fitted residuals for the Vatnsdalsa riverflow during the year 1974. In both

cases the model predictions react very well to both the extreme spring transition and low
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riverflow that occurs later in the year. However, as expected the 1-step predictions using

coefficient updating prediction (Figure 32) is an improvement over the 1-step fixed model

predictions (Figures 33). The standard error of the fitted residuals are a, is 2.11 m3/sec.

and a,, is 2.36 m3/sec. respectively. Figure 34 gives the estimated normalized periodogram

of the fitted residuals from the 1-step ahead predictions of Model ICE486 using the 'coeffi-

cient update' prediction model. The cumulative normalized spectrum of the fitted residuals

falls outside the 90% K-S bounds for Gaussian white noise thus indicating that the fitted

prediction residuals are not Gaussian white noise.

Vatnsdalsa River Data (1974)
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Figure 32. The actual riverflow versus I-step ahead predictions [top] and errors [boPtm from
MODEL ICE486 for the Vatnsdalsa riverflow data (1974) with coefficient updating
(coefficient update). The standard error of the fitted residuals a is 2.11 m3/sec.
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Figure 33. The actual riverflow versus I-step ahead predictions [top] and errors [bottom] from
MODEL ICE486 for the Vatnadalsa riverflow data (1974) without coefficient up-
dating (fixed model). The standard error of the fitted residuals or is 2.36 m3 /sec.
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Figure 34. The estimated normalized periodogram of the fitted residuals of SMASTAR Model
ICE486 from the Vatndalsa riverflow data for 1974 using the 'coefficient update'
prediction model. The cumulative normalized spectrum of the fitted residuals falls
outside the 90% K-S bounds for Gaussian white noise indicating that we should reject
the hypothesi that the fitted residuals from this prediction effort are Gaussian white
noise.
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C. SUMMARY

This chapter extended the ASTAR modeling methodology developed in Chapter II to

semi-multivariate ASTAR (SMASTAR) modeling methodology, which appears well suited

for taking into account the complex nonlinear interactions among multivariate,

cross-correlated, lagged predictor variables of a time series system. Using the Vatnsdalsa

riverfiow system as an example, Tong et al. (1985) showed that normal autoregressive mod-

els were incapable of capturing the complexities of the cross-correlated predictor variables of

this type time series system. Also, the methodology for and structure of semi-multivariate

TAR appears incapable of capturing these complexities with a parsimonious model. How-

ever, the MARS methodology in the form of a SMASTAR model appears to better consider

.the complex relationships between the cross-correlated predictor variables and seems capa-

ble of providing semi-multivariate nonlinear time series models for prediction. Moreover,

the MARS methodology, although computer intensive, provides a systematic approach to

modeling time series systems.

It is important to note that the lagged riverflow, precipitation and temperature may

only provide rudimentary insights into riverlow modeling and prediction and may not

be sufficient for developing a model of this semi-multivariate time series system. Other

predictor variables such as wind conditions in the case of the Vatnsdalsa riverflow system

may provide important information for modeling of the riverflow system. As with any

regression or time series modeling effort, one can never be sure that one has all the relevant

predictor variables. However, this additional complexity can be handled in MARS 3.0 with

the modifications that will be discussed in Chapter IV.

Other data sets, such as the Canadian Lynx data, and the Sea Surface Temperature

data that will be discussed in chapter IV, and many other riverflow data sets exhibit 'peri-

odic' behavior and it would be of interest to model them with the SMASTAR procedure.

Of special interest are those data sets with a fixed cycle oscillation that dominates the data.

The length of the Vatnsdalsa riverfiow data modeled in this chapter may not have been a

long enough to satisfactorily establish the fixed yearly oscillation that appears to exist in

the SMASTAR models.
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IV. MODELING OF TIME SERIES SYSTEMS USING MARS 3.0

The univariate and semi-multivariate ASTAR models developed in Chapters II and

III are the result of applying the alpha test version of the MARS 2.0 program (released

in December 1989) to the Sunspot numbers and Vatnsdalsa riverflow data sets. Friedman

released the alpha test version of the MARS 3.0 program in December 1990. The MARS

3.0 program is a collection of subroutines that implement the multivariate adaptive regres-

sion spline strategy developed in Chapter II. Changes in the MARS 3.0 program include

plotting subroutines that are useful for interpreting a MARS model, and logistic regression

subroutines for modeling categorical variables. Note that these subroutines are of interest

but have not been fully investigated for application in a time series setting. The subroutines

for use in time series analysis were largely unaffected in the update from the MARS 2.0

program to the MARS 3.0 program.

Our use of the MARS 2.0 program for univariate and multivariate time series modeling

and analysis was largely time series specific. For example, our time series modification

of the MARS 2.0 program permitted only 20 lagged predictor variables and there was

always a residual question as to whether the model would, in some sense, converge if the

modeling effort was 'opened up', i.e., if more lagged predictor variables were permitted.

Thus, given the results of the ASTAR and SMASTAR time series models developed in

Chapters II and 1II, it was of interest to develop the capabilities of the MARS 3.0 program

so that it could be used for the general modeling and analysis of any time series system.

In particular, the current MARS 3.0 time series program include; simplified input for the

program parameters and different input time series, automatic development of the regression

matrix for up to three input time series for any combination of lagged predictor variables,

automatic computation of memory requirements necessary for the array space calculations

used during execution of the MARS 3.0 program, and model output that facilitates analysis

of the ASTAR or SMASTAR time series model. In addition, a major change is the inclusion

of model selection criteria other than GCV" (discussed in Chapter V), the original model

selection criterion in the MARS 3.0 program. Note that the Fortran Programs presented in
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the appendices are for use with NDP Fortran 2.1.4 under DOS with Microway NDP Fortran

using the Microway Weitek Coprocessor. This Fortran uses the PharLap DOS Extender to

enable Fortran to use all available RAM. However, almost identical programs are available

for IBM mainframe computers running VS Fortran.

This chapter is divided into two sections. Section A of this chapter discusses the

Fortran programs developed for time series modeling and analysis using the MARS 3.0

program. Section B of this chapter briefly reports on the modeling and analysis of the

Granite Canyon sea-surface temperatures using the MARS 3.0 program and the Fortran

programs discussed in Section A of this chapter. The sea-surface temperatures are a very

long and complex data set with interesting phenomena on many time scales. Thus it is

interesting to see how the MARS methodology handles this time series.

A. NEW FORTRAN SUBROUTINES FOR MODELING TIME SERIES

SYSTEMS USING MARS 3.0

As presently constituted, the MARS 3.0 program is not simple to use for time series

modeling and analysis. The MARS 3.0 program requires that various program parameters

be set, does not manage memory requirements for different modeling projects and requires

a complete regression design matrix as program input. To overcome these difficulties For-

tran programs were developed for time series modeling and analysis using the MARS 3.0

program. Appendices A thru C are Fortran programs to prepare and execute the MARS 3.0

program for the nonlinear modeling and analysis of time series systems. A BATCH program

(appendix A) provides useful user information and sequentially executes the MARSBLD

(appendix B) and MARSDRV (appendix C) Fortran programs. The BATCH program first

calls MARSBLD (appendix B), which asks for the names of up to 3 input time series files

and then prepares the regression design matrix and program parameters for input into the

MARS 3.0 program. Each time series is located in a separate file with leading lines that con-

tain the model parameters (including the lagged predictor variables) necessary for running

the MARS 3.0 program. Next, the BATCH program calls MARSDRV (appendix C), which

first computes the memory requirements needed in the MARS 3.0 program and then, if the

memory allocation is sufficient, initiates the MARS algorithm described in Chapter II. The
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only value that may need adjustment is the parameter for MARS 3.0's memory allocation

that is located on the 2nd line of MARSDRV.

The first 3 records of each input time series contain the model parameters necessary

for initiating the MARS 3.0 program. Note that parameters common to the entire program

are marked with an asterisk (*) and are actually taken (read) from the first input time

series. The model parameters are;

1. N - The total length of the time series system to be investigated including the
initialization values, i.e., only N - d* values will be modeled where d* is the maximum
lagged predictor variable across all input time series. Each input time series must be
of at least length N.

2. P - The total number of predictor variables from the input time series. For example,
a time series that is modeled with lags 1, 2 and 10 uses three predictor variables.

3. MI* - The maximum level (upper bound) of interactions permitted in the generated
ASTAR or SMASTAR model. In general, this parameter should be set to MI < 3.
Models permitted to form higher level interactions are difficult to analyze and have a
tendency to become unstable.

4. NK* - The maximum number of steps in the forward-step MARS algorithm. The
forward-step algorithm is followed by a backward-step algorithm that trims excess
terms from the model.

5. MS* - The minimum span (in the form of the number of data points) between
adjacent thresholds on a lagged predictor variable. This model parameter can be
thought of as a smoothing parameter similar to the bandwidth in kernel smoothing.
A large value of MS permits fewer threshold values on a given predictor variable.

6. DFO - The degrees of freedom charged for the selection of a predictor variable,
threshold value and coefficient for inclusion in a MARS model. In general values of
2 < DF < 4 are recommended with a value of DF = 3 used most frequently.

7. MSC - The model selection criterion for use within MARS 3.0. The alternatives
(discussed in Chapter V) include Friedman's GCV*, Akaike's AIC, Schwarz and
Rissanen's SC, and Amemiya's PC.

8. LX - Flag for each lagged predictor variable of each time series.

(a) 0 - Directs the predictor variable be excluded from the model.

(b) 1 - The predictor variable has no restriction. The predictor variable can enter
the model with or without a threshold value and also can enter the model as an
interaction with other predictor variables.

(c) 2 - An additive predictor variable. The predictor variable can enter the model
with or without a threshold value. However, the predictor variable is not per-
mitted to enter the model as an interaction with other predictor variables.
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(d) 3 - A linear predictor variable. The predictor variable can enter the model only
as a linear variable, i.e., without an internal threshold. It is not permitted to
enter the model as an interaction with other predictor variables.

(e) -I - A categorical predictor variable with no restriction. The categorical predictor

variable can enter the model as an interaction with other predictor variables.

(f) -2 - An additive categorical predictor variable. The predictor variable can enter
the model but is not permitted to interact with other predictor variables.

9. LAGS - The actual identification of the lagged predictor variables for each time
series. For example, LAGS = 1, 2 and 5 means the 1st, 2nd and 5th lagged predictor
variables. The lagged values must be ordered from smallest to largest. The maximum
value of LAGS across all input time series will dictate the number of values used for
model initialization, d.

The sample output (appendix D) of an ASTAR or SMASTAR model that results

from the execution of the MARS 3.0 program includes; a summary of the model parameters

(discussed above), the forward and backward steps of the MARS algorithm, the final MARS

model matrix, the relative benefit of each lagged predictor variable included in the final

model and the final model output in a form that permits some model analysis.

B. GRANITE CANYON SEA-SURFACE TEMPERATURES

The Granite Canyon time series is a large data set of the daily raw sea-surface temper-

atures taken at Granite Canyon, a point just north of Big Sur along the coast of California.

Using MARS 3.0 and the Fortran programs discussed in Section A, three ASTAR time

series models of this data were developed for test purposes and to compare with results of

a previous modeling effort by Breaker and Lewis (1985). The next two parts of this section

are a brief background discussion of the Granite Canyon sea-surface temperatures and the

modeling effort taken from Breaker and Lewis (1985). The last part of this section is a dis-

cussion of three ASTAR time series models of the Granite Canyon sea-surface temperatures

developed using the MARS 3.0 program and the Fortran programs discussed in Section A.

1. Sea-Surface Temperatures

Sea-Surface temperatures (SSTs) and their changes in time and space (ocean

depth, longitude and latitude) contribute to our understanding of complex ecological issues

such as the dispersal of pollutants and fisheries biology. Investigations along the U.S.

Pacific Coast indicate that coastal SSTs can be useful indicators of ocean temperature
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variability, representative of phenomena occurring over wide regions, related to other ocean

and atmospheric variables and have consistent internal structure. Two major factors that

contribute to the seasonal variability of SSTs along the California coast include coastal

upwelling and the coastal countercurrent. Many investigations of the SSTs appear to focus

on temperature anomalies that can persist for several months and influence wide areas of

the coast.

Along the California coast, SSTs are collected at approximately 25 locations. The

coastal observations often extend over many years and thus provide a unique opportunity to

examine coastal variability over relatively long periods. For locations where the measuring

site has a good exposure to the adjacent continental shelf and slope, measurements of

SSTs may be particularly revealing with respect to some of the physical processes that

occur regionally as well as locally. Additional SST background material and references is

available in Breaker and Lewis (1988).

2. Spectral Decomposition of the Granite Canyon Sea-Surface Temperatures

The purpose of Breaker and Lewis (1985) was to model the behavior of the 12

year Granite Canyon data set (Figure 35); to use the model and other statistical techniques

to project or predict the data to future time and to provide a descriptive interpretation of

the Granite Canyon data from the oceanographic viewpoint. The model considered was

Y, = M + S, + C, (56)

where M, is a linear trend, S, consists of seasonal and cyciic changes, and c, is a mean

zero, constant variance, stationary random sequence that describes irregular fluctuations

and is independent of the other model components.

The modeling procedure initially used least squares regression to identify the

linear component MT = 10.9 + .000374r. There is no doubt that there is an evolutionary

trend in the data, probably part of a long term cycle. Unless removed, it corrupts the

periodogram with large values at very low frequencies.

Next, after detrending the data with the linear component M, the components S,

and e, were identified using a complex iterative method composed of spectral decomposition

and autoregresaive time series modeling. The resulting model's long term cyclical and
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Figure 35. The record of 12 years of daily raw sea-surface temperatures at Granite Canyon from
1 March 1971 to 1 March 1983 taken at approximately 0800 hours each morning. The
range of values for the daily sea-surface temperatures range from 8.0 to 17.0 IC. with
a mean value of 11.7 *C. A least-squares fit of a linear trend to the data indicates
that the 'average' temperature rose from about 10.9 to 12.5 *C during the 4380 days
of the data set. This change in overall temperature level is evident to fishery industry
and others as a gross change in the animals and flora seen in the area during this
time. Note that the El Nino phenomenon is clearly evident in the record, particularly
in 1979 (about day 3200).
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seasonal changes component, S, used 13 terms that correspond to 46.6, 182.5, 243.3, 365,

398, 486.6, 547.5, 625.7, 730, 876, 1095, 1460, and 2190 days. There is no physical basis

for some of these fixed cycle components; they represent an unsatisfactory edifice for model

building. However, there is a definite long term (3 to 5 year) effect of the El Nino, which

one would clearly like to model and predict. The error term, e, was modeled as an AR(2)

process with a standard deviation of .537 °C, although a hump in the correlogram at a lag of

about 14 days was unaccounted for. The subsequent analysis of the fitted values and fitted

residuals of the model indicated that the model was reasonably adequate and accurate. One

and two step predictions (Breaker and Lewis, 1985) of the 30 days immediately following

the modeling period (1-30 March 1983) resulted in predictive MSE's of .40 *C and .57 °C

respectively.

3. ASTAR Models of the Granite Canyon Sea-Surface Temperatures

Three ASTAR models of the Granite Canyon sea-surface temperatures were de-

veloped using MARS 3.0 and the Fortran programs discussed in Section A. The first model

(Granitel) used lags 1 to 49 and lag 365 of the sea-surface temperature series as the model

predictor variables; the second model (Granite2) used lags 1 to 50 of the sea-surface tem-

perature series and a discrete valued cosine and sine curve with a period of 1 year as the

model predictor variables (the cosine and sine predictor variables were restricted as linear

terms i.e., these two predictor variables were not permitted to interact with other predic-

tor variables and were not permitted to form threshold terms); the third model (Granite3)

used lags 1 to 50 of the sea-surface temperature series as the model predictor variables. The

model parameters were: MI = 3, the maximum level of interaction in the ASTAR model;

MS = 50, the minimum span between threshold values on a predictor variables; NK = 60,

the number of forward steps in the MARS algorithm with N = 4380 days of sea-surface

temperatures.

The three ASTAR time series models are similar. Appendix D is the output of

the second ASTAR model (Granite2) with lags 1 to 50 and a discrete valued cosine and sine

curve with a period of 1 year as the input predictor variables. The model contains 45 terms

(a model constant, 5 one-way, 10 two-way and 29 three-way interactions) and 27 threshold

values (one on lags 5, 7, 15, 17, 19, 20, 25, 29, 30, 31, 36, 39, 44, 45, and 47; two on lags 2
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and 3; three on lag 35 and five on lag 1). The lag 14 and 26 predictor variables enter the
model as linear terms, i.e., without interior threshold values. This is interesting because
the effect is dearly seen in the correlogram of the detrended data.

Using the relative loss of model fit due to the removal of each term from the
model, the most important terms in the model are the lag 1, 2, 14, 36, cosine, 3 and 35
followed by the other terms of the model. The appearance of the lag 26 predictor variable
is interesting; it corresponds to the effect, whose origin is as yet anknown, reported on in
Breaker and Lewis (1988). ASTAR Model Granite2 is

15.78 -0.103 cos(r/365)

+1.124(X,_ 1 - 15.4)+ - 1.042(15.4 - X _i)+
-0.075(X,_- 2 - 8.00)+ + 0.051(X_ 2o - 9.50)+

+0.368(15.4 - X,-I)+(X,_ 2 - 14.9)+ - 0.214(X,- 2 - 14.8)+(X,_ 14 - 8.00)+
-0.018(X. 2 - 8.00)+ (13.4 - X,-17)+ - 0.026(X_ 2 - 8.00)+ (X, - 13.4)+
-0.159(X,- 2 - 8.00)+(9.10 - X.,- 19)+ - 0.014(X,- 2 - 8.00)+(X,_19 - 9.10)+
-0.021(X,- 2 - 8.00)+(12.4 - X,_w)+ - 0.356(X,- 3 - 14.8)4 (X,_ 14 - 8.00)+
+0.015(X,_14 - 8.00)+(15.4 - X,- 35)+ - 0.049(Xr_ 14 - 8.00)+(Xr_35 - 15.4)+

-0.018(X,_l - 13.1)+(14.8 - X,- 2)+(X,-,14 - 8.00)+

-0.001(15.4 - X.-.1)+(14.9 - Xr- 2)+(15.0 - X'-15)+

+0.057(15.4 - X-l)+(14.9 - X,-)+(X--, 5 - 15.0)+
+0.006(14.9 - Xr~l)+(X_ 2 - 8.00)+(13.4 - X,-17)+

+0.054(X- 1 - 14.9)+(X_ 2 - 8.00)+(13A - X,-II)+

+0.075(10.9 - X- 1 )+(X,--2 - 8.00)+(Xr_3 - 12.4)+

-0-0o4(x _- 10.9)+(X,_ 2 - 8 - 12.4)+

+0.044(X,_- 2 - 8.00)+(Xr_ 3 - 14.8)+(X,_ 14 - 8.00)+

+0.026(X,- 2 - 8.00)+(13.6 - X,-3 )+(X,_.3 - 13.3)+

+0.013(X,- 2 - 8.00)+(X,- 3 - 13.6)+(13.0 - X,-45)+
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+0.015(X,- 2 - 8.00)+(X,_ 3 - 13.6)+(X,- 45 - 13.0)+

-0.024(X-,- 2 - 8.00)+(12.8 - X ._s)+(X,_-36 - 12.4)+

-0.006(X_ 2 - 8.00)+(11.8 - X.,-_)+(13.4 - X-¢)+

-0.008(X,- 2 - 8.00)+(X_- 7 - 11.8)+(13.4 - X,-17)+

-0.031(X.- 2 - 14.8)+(X,_ 14 - 8.00)+(X,- 2e - 8.00)+

+0.051(X,- 2 - 14.8)+(Xr. 14 - 8.00)+(X,-36 - 8.00)+

+0.044(14.8 - Xr- 2)+(X- 14 - 8.00)+(Xr- 3_ - 15.0)+

+0.013(X,- 2 - 8.00)+(X.-17 - 13.4)+(13.4 - X,-31)+

+0.015(X,- 2 - 8.00)+(Xr-1 7 - 13.4)+(X,- 31 - 13.4)+

-0.042(X,- 2 - 8.00)+(X,- 17 - 13.4)+(X,.-44 - 14.9)+

0.027(X,_2 - 8.00)+(X,-1 9 - 9.10)+(10.0 - Xr-3)+

-0.O05(X,-2 - 8.00)+(Xr-19 - 9.10)+(X,-3s - 10.0)+

-0.016(X,- 2 - 8.00)+(10.2 - X-r- 3o)+(12.4 - Xr-3e)+

-0.006(X r- 2 - 8.00)+(X,-30 - 10.2)+(12.4 - X-e)+

-0.029(X,- 2 - 8.00)+(Xr- 3s - 12.4)+(11.8 - X,-47)+

-0.019(14.8 - X,- 3 )+(X,- 1 4 - 8.00)+(10.1 - X,-2)+

-0.003(14.8 - X,-)+(X,-14 - 8.00)+(X,- 29 - 10.1)+

+0.017(Xr-4 - 8.00)+(9.5 - X_ 265)+(15.4 - X,_3)+

The results from the three ASTAR models and the spectral decomposition model

(56) appear similar. The standard error of the fitted residuals of ASTAR Model Granite2 is

a, = .516*C, versus .537*C for the spectral decomposition model (56). Both models identify

the yearly component as an important term along with the importance of lag terms between

lag 40 and lag 50. Figures 36 - 39 are plots for the analysis of the fitted residuals of the three

ASTAR models. Figure 36 shows the fitted residuals from 1 March 1979 to 28 February 1980

for the three ASTAR models of the Granite Canyon sea-surface temperatures. No pattern

appears to exist. Figures 37 - 39 show the histogram, normalized cumulative periodogram

and residual probability plots of the fitted residuals from the three ASTAR models for

the Granite Canyon sea-surface temperatures. The residuals from the histogram plots are

slightly positively skewed. Figure 38 shows that we can consider the residuals independent
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if they are normally distributed because the normalized cumulative spectrum of the fitted

residuals falls entirely within the 90% K-S bounds from the cumulative spectrum for white

noise. However, the residual probability plots in Figure 39 show that the fitted residuals are

slightly skewed with heavy tails, thus indicating the nonnormality of the fitted residuals.
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RESIDUAL ANALYSIS for 3 Granite Models
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Figure 37. The histogram of the fitted residuals from 12 years of data ( March 1971 to 1 March
1980) for three ASTAR time series models of the Granite Canyon sea-surface tem-
peratures. The histograms are overfitted with a normal curve. The fitted residuals
from each model appear slightly positively skewed.
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Figure 38. The normalized cumulative periodogram for the fitted residuals from 12 years of data
(1 March 1971 to 1 March 1980) for three ASTAR time series models of the Granite
Canyon sea-surface temperatures. We can consider the residuals independent if they
were normally distributed because the normalized cumulative spectrum of the fitted
residuals falls entirely within the 90% K-S bounds from the cumulative spectrum for
white noise.
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RESIDUAL PROBABILITY PLOT
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Figure 39. Normal Probability plots of the fitted residuals from 12 years of data (1 March 1971
to 1 March 1980) for three ASTAR time series models of the Granite Canyon sea-
surface temperatures. Note that in all three cases th- fitted residuals are slightly
skewed with heavy tails, thus indicating the nonnormality of the fitted residuals.
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C. SUMMARY

The straightforward application of the MARS 3.0 program for the modeling and anal-

ysis of time series systems is not simple. This chapter discussed modifications to the MARS

3.0 program and additional Fortran programs that were developed to permit the general

modeling and analysis of time series systems. Specific changes include; the simplification of

program parameter input along with the input of different time series, automatic develop-

ment of the regression matrix for up to three input time series for any combination of lagged

predictor variables, automatic computation of memory requirements necessary for the array

space calculations used during execution of the MARS 3.0 program, and model output that

facilitates analysis of the ASTAR or SMASTAR time series model. Also, a major change

is the inclusion of model selection criteria other than GCV" (discussed in Chapter V, the

original model selection criterion in the MARS 3.0 program.

The MARS methodology in conjunction with these time series modifications represents

a new computer intensive but systematic (automatic) modeling approach that isolates the

low-dimensional structure among the lagged predictor variables, simplifies the modeling

effort and, as shown in Chapters II and II1, provides an interpretable representation of

a nonlinear time series model that can be used to analyze the relationships between the

dependent (output) variable and the independent (explanatory) variables of nonlinear time

series systems. The ASTAR time series models for the SSTs generated in this chapter took

less than 20 minutes of CPU time on an IBM 3030 mainframe computer using VS Fortran.

Other modeling efforts of sea-surface temperatures have been limited due to the size

and complexity of the sea-surface temperature time series system. These limitations appear

to be overcome by ASTAR and SMASTAR time series models. What would be of greater

interest than the univariate analysis of sea-surface temperatures is an investigation using

lagged and cross-correlated sea-surface temperatures, surface winds and time as predictor

variables. The application of the MARS algorithm to time series to produce SMASTAR

models appears to provide this opportunity.
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V. MODEL SELECTION FOR NONLINEAR TIMES SERIES

MODELING USING MULTIVARIATE ADAPTIVE SPLINE

REGRESSION (MARS)

A. INTRODUCTION

One difficulty that is often faced during the selection of the regression model is the

problem of choosing the appropriate predictor (explanatory) variables and model dimension,

i.e., which of the given predictor variables to include in the final model, either for the

purpose of prediction or for the purpose of description. This chapter examines the problem

of model dimension and variable selection when using adaptive regression splines to develop

a nonlinear autoregressive model for a univariate or semi-multivariate time series system.

The current MARS algorithm, formulated by Friedman (1991) and implemented in the

MARS 3.0 program, uses a form of residual-squared-error as a model selection criterion, in

part because of its attractive computational properties. The actual model selection criterion

that is used in the forward and backward steps of the MARS algorithm is a modified form

of the generalized cross validatiou criterion (GCV) first proposed by Craven and Wahba

(1979). However, one question that immediately develops is whether the modified GCV

criterion is the 'best' criterion for model selection when using serially and cross-correlated

time series data. Other model selection criteria, such as Akalke's Information Criterion

(AC) (Akaike, 1974), have been suggested for model development in a standard linear

autoregressive time series setting.

Section B of this chapter is a brief discussion of five modeling criteria selected for

evaluation and comparison within the MARS methodology. The five criteria include GCV"

(Friedman, 1991), Akaike's Information criterion (AC) (Akaike, 1974) and modified AIC

(AC2) (Akaike, 1979), Amemiya's criterion (PC) (Amemiya, 1980) and Schwarz's crite-

rion (SC) (Schwarz, 1978; Rissanen, 1978). Section C of this chapter examines the ability of

the different criteria to correctly identify simple linear and nonlinear models and efficiently

estimate the model coefficients. However, an approximation to the relationship between
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the response variable in terms of the explanatory variables of the time series system may

be more important than exact model specification and the exact identification of relation-

ships between the response variable and the different predictor variables. In this regard,

Section D of this chapter examines the ability of the different model selection criteria to

estimate the fitted values and the limit cycle from ASTAR Model 9 (38) of the Wolf Sunspot

numbers. ASTAR Model 9 resulted from the investigation of the ability of MARS to model

an actual time series in a more difficult setting. Section E of this chapter is a discussion

of the application of the model selection criteria to the Vatnsdalsa riverflow data, where

in an 'unrestricted' modeling environment the SC model selection criterion resulted in a

better riverflow model than Model ICE486 developed in Chapter III using the GCV* model

selection criterion.

B. MODEL SELECTION CRITERIA

Much of the literature concerned with estimation and inference of a sample time series

makes the assumption that we are able to correctly specify the model dimension. However,

this situation may be the exception. It is more likely the case that important explanatory

variables are omitted or extraneous explanatory variables are permitted in the model. As

observed by Akaike (1974), the problem of model selection and fitting in the time series

setting is best summarized as a "multiple decision criterion". In this regard, numerous

attempts have been made to develop model selection rules and to provide some framework

for their use. This section introduces the model selection and fitting problem (Judge et al.,

1985) and then briefly discusses the current model selection criterion in MARS, GCV* (23),

and four proposed model selection criteria from linear autoregressive time series modeling for

use within MARS; Amemiya's Prediction Criterion (PC) (Amemiya, 1980) and three other

'information theory' based criteria suggested for model selection in a time series setting.

The three information theory criteria include Akaike's Information Criterion (AIC) (Akaike,

1974), Schwarz Criterion (SC) (Schwarz, 1978; Rissanen, 1978) and Modified Information

Criterion (AIC2) (Akaike, 1979). Note that the development and application of the AIC,

SC, PC and AIC2 criteria are based on the investigation of linear autoregressive and

moving average (ARMA) processes. Here, our investigation focuses on the application the

AIC, SC, PC and AIC2 criteria to non-linear time series processes.
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1. Model Selection

A critical aspect in determining the form of the non-parametric regression model

during each step of the MARS strategy is the model selection criterion that is used to

evaluate model fit and determine the 'proper' model dimension. At each forward step in

the MARS algorithm, the model selection criterion is used to select the candidate term

that most improves the overall 'goodness-of-fit' for addition to the model. As discussed

in Friedman (1991), it follows that at the end of the forward-step procedure there may be

model terms that no longer sufficiently contribute to the model fit. Thus at each backward

step of the MARS algorithm, the model selection criterion is used to choose a candidate term

that least degrades the overall 'goodness-of-fit' for deletion from the model (see Friedman

(1991)) for a discussion of the stopping rules for the forward and backward steps of the

MARS algorithm).

Without loss of generality assume that MARS is in the backward stepwise proce-

dure, i.e. trimming excess terms from the time series model. As in (1) assume there are N

samples of Y aUnd X, namely {Y,, XT1=_. Using Judge et al., (1985) we can discuss the

problem of model selection at a given step in the MARS procedure using the parameterized

linear statistical model,

Y = Xfi + e = X101 + X 20 2 + e, (57)

where Y is the N-dimensional response vector for the model, X = [XI,X 21 is the current

(N x k) design matrix with X, and X 2 of dimension (N x ki) and (N x k2) respectively,

and e is an N-dimensional error vector that has mean zero with variance oe. Also, 0 is

a k-dimensional vector of unknown parameters that is likewise partitioned into parameter

vectors #I and /2 of dimension k, and k2 respectively. The least squares estimators of

and ae' are b = [b, b2]T and &2 respectively.

If the model (57) is correct, i.e., the proper dimension of the model is in fact k,

then the least squares estimators b and &.2 are minimum variance unbiased estimators

of P and re2 . Now assume that the matrix X 2 contains the model terms proposed for

possible elimination during the backwards step of the MARS algorithm. The question of

interest is whether or not to trim 'excess' terms from the model, i.e., whether or not to set
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#2 = 0. Eliminating necessary terms from the model (setting 12 = 0) results in the least

squares estimators b and &, and the estimates of y being biased while failing to eliminate

unnecessary terms from the model (setting #2 # 0), results in the least squares estimator b

and the estimates of y having increased variance (roughness) (Rao, 1971). Thus the question

of whether or not to set 02 = 0 leads an implicit or explicit determination of the tradeoff

between the conflicting objectives of bias and variance. One approach for comparing this

trade-off and determining whether or not to set #2 = 0 is overall Mean Square Error (MSE).

MSE has been used as the basis of eevelopment for many model selection criterion

such as Mallows' Cp (Mallows, 1973) and the GCV* (Friedman, 1988) and PC (Amemiya,

1980) model selection criteria investigated in this chapter. The form of these model selection

criterion and the others investigated in this chapter may be divided into two distinct parts,

one part that considers lack-of-fit between the proposed model and data (most frequently a

function of the residual sum of squares) and the other part that considers model complexity

(usually a function of the number of independent parameters in the model). Adding addi-

tional terms to a regression model permits a decrease in the model's lack-of-fit that incurs

a corresponding increase in model complexity. The model that minimizes a given model

selection criterion across all investigated models is selected as the 'best' regression model.

Note that all of the model selection criterion investigated in this chapter are some form

of a modification of the GCV* criterion, the current model selection criterion in MARS,

and are easily (though tediously) incorporated into the MARS program. This modification

of the implementation of the MARS 3.0 program was discussed in Chapter IV. Another

model selection criterion for which major modifications would be required of MARS and

was therefore not considered is Parzen's CAT criterion (1974).

2. Modified Generalized Cross Validation (GCV*)

The model selection criterion that is currently used for model selection in MARS

is a modified form of the generalized cross validation criterion (GCV) first proposed by

Craven and Wahba (1979). GCV was developed as an extension of the cross validation

(CV) criterion pioneered by Stone (1977). Both Craven and Wahba (1979) and Friedman

(1991) provide discussion and references for the development and use of the GCV criterion.
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If we let the residual sum of squares between the data and the fitted model be

N
= (58)

i=1

then the modified generalized cross validation criterion (GCV*) used in a MARS model

with subregions {Rj)_ 1 is,

GCV-(M) N ~ 1~]) (59)

Again as discussed in Chapter II the difference between GCV* and GCV is in the computa-

tion of C(M)*, a model complexity penalty function that is increasing in M, the number of

nonconstant basis functions in the MARS model (Friedman, 1991). C(M)* is representative

of the number of independent model parameters in a MARS model with M subregions, and

accounts for the heavy use of the data in determining both the predictor variables and the

predictor variable patition points in addition to the usual model coefficients. Typically the

residual sum of squares decreases as the model becomes more and more complex, but the

second term increases so that at some point a minimum is reached.

Friedman (1991) provides valuable insights into the use of the GCV" criterion

for various types of MARS modeling. However, the setting that Friedman proposes for the

use of the GCV" criterion does not assume serial correlation among the predictor variables.

Thus there is a question whether the GCV" criterion is the "best" criterion within MARS

for the development of ASTAR and SMASTAR models using serial correlated and cross-

correlated predictor variables.

S. Model Selection using Information Theory

Many of the popular model selection criterion that are used in a linear times series

setting are based on information theory. Most are an outgrowth of the development of the

A/C criterion, which is based on the Kullback-Leibler Information Criterion (Akaike, 1974).

The objective of a model selection criterion that is based on information theory is to select

a model that 'best' incorporates the conflicting considerations of precision of the model

estimates (again a measure of the remaining lack-of-fit of the model) and model parsimony

(usually a measure of model complexity).
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a. Akaike's Information Criterion (AIC)

The use of AIC as a model selection criterion is popular because of its

simplicity. However, there are some indications that the AIC Criterion, in the context of

linear autoregressive time series modeling, overestimates the number of model parameters,

thus favoring a decrease in model lack-of-fit with respect to model complexity i.e., the AIC

criterion develops an over-parameterized model. The AIC criterion for a MARS model with

subregions {Rj}_ 1 is,

AIC(M) - In (' + 2 (C() (60)

Note that

In (GCV*(M)) = AIC(M) +2 (In (+ N-C(M)) ( .)

Using the first three terms of a Taylor series expansion to approximate

+ C(M)"

gives,

in(GCV(M)) = AIC(M) + 2 (In(l) + c( -. 5(NC )2 (M))N-!(;!). ,N-V(U)., -CN')

= AIC(M) + 2 (i 5( C(M) .)2)

= AIC(M) + o (k) I

so that the AIC and GCV* criteria are closely related, especially when N, the sample size,

is large.

b. Scbwars Criterion (SC)

In response to indications that the AIC criterion over-parameterizes the

model, Schwarz (1978) developed a model selection criterion using a Bayesian argument.

At the same time, Rissanen developed (see Rissanen, 1987) a model selection criterion using

stochastic complexity analysis to evaluate the uncertainty in the data. When applied to

linear time series modeling Risssanen's criterion is equivalent to the Schwarz criterion. Note
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that Rissanen (1987) makes a strong case for the use of this criterion because of its apparent

widespread applicability. In comparison to the AIC criterion (60) the Schwarz-Rissanen

(SC) criterion increases the penalty for adding additional terms to the model by a factor

of (1/2) In(N). The SC criterion for a MARS model with subregions {Rij}I is,

SC(M) = In + In(N) C(M)"\N) N(61)N N

c. Akaike's Bayesian nformation Criterion (AC2)

Akaike (1979) also used a Bayesian framework to develop a criterion for

selecting a more parsimonious linear time series model than the AIC criterion (60), i.e.

a criterion that like the SC criterion (61) increases the importance of model complexity

with respect to the model lack-of-fit within the regression model. The AIC2 criterion for a

MARS model with subregions {Ri)j}t_ is,

____2 2x'~ ') &
AIC2(M) = (N - C(M)-) In ( - M))+ C(M)* lI ( y,) (62)

4. Amemiya's Prediction Criterion (PC)

To consider the cost associated with selecting an incorrect model, Amemiya (1980)

developed a model selection criterion based on minimizing the unconditional mean squared

prediction error. This results in a modification to the AC criterion (60) that corrects for

increasing complexity due to adding adjitional terms to the MARS model. Again, as with

the SC (61) and AIC2 (62) criteria, Amemiya's PC criterion imposes a heavier penalty than

the AC criterion (60) for adding additional terms to a model. Amemiya's PC criterion

for a MARS model with subregions {Rj})A= is,

Note that

GCV*(M) =PC(M) + Cn

- PC(M)+o0 )
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so that the PC and GCV ° criteria are closely related, especially when N, the sample size,

is large.

C. SOME SIMPLE SIMULATIONS TO COMPARE MODEL SELECTION

CRITERIA

In Chapter II simulations were used to show the ability of MARS to identify and es-

timate the coefficients of simple linear and nonlinear time series models. In this section

simulations are now used to initially examine the relative ability of the model selection

criteria discussed in Section B, to identify and estimate the coefficients of simple linear and

nonlinear time series models. Again, the simulation of an AR(l) model with known coef-

ficients examines the relative ability of each model selection criterion to detect and model

a simple linear time series within the framework of the MARS methodology. The simula-

tion of a threshold model with 'AR(l) - like' models in each disjoint subregion examines

the relative ability of each model selection criterion to detect and model simple nonlinear

threshold time series within the framework of the MARS methodology. As in Chapter II

the interest in these simulations is two-fold: how often was the true model identified by

each model selection criterion and if not, did the model selection criterion overestimate or

underestimate the number of model parameters. Secondly, if the true model was identified

how well were the model parameters estimated by each model selection criterion.

I. AR(1) Time Series Model Simulations

As in Chapter II the initial simulation experiment uses the AR(l) model,

X, = pX,-2 + K + c, (64)

where r = 1,2,...,N indexes the time series, p is a constant coefficient, K is the model

constant taken to be zero, and c, is N(O, or,2). As described in Chapter II the model is usually

considered under the stationarity conditions (I p 1< 1), but non-stationary processes such

as random walks (I p I = 1) and explosive processes (I p I > 1), are also of interest.

Again, two categories of experiments were conducted using the AR(1) time series

model (equation 64).
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The first experiment required the model selection criterion within MARS to esti-

mate an AR(1) time series model from the simulated data using one lag predictor variable

X.,-I, and using M = 3, the maximum number of subregions in the forward-step MARS

procedure. The alternative models for the first experiment (to the AR(l) time series model)

either have no X_-i term (a constant model) or have an X,_1 term with an internal thresh-

old value t greater than min{X-_}N--.

The second experiment required the model selection criterion within MARS to

estimate an AR(1) time series model from the simulated data when up to four lag predictor

variables, {X,_ij=,, are allowed and using M = 8, the maximum number of subregions

allowed in the forward-step MARS procedure. The alternative models for the second ex-

periment include constant models, nonlinear time series models with at least one internal

threshold value, and any time series model that includes a term other than X,-,, i.e., lags

r - 2, r - 3, or r - 4.

Simulation experiments were performed for various combinations of p and for

various values of the smoothing parameter MS, the minimum number of data points between

knots on the same predictor variable. Table 6 and Figures 40-45 show the simulation results

for p = .5, .7, and .9 using u2 = N(O,1), with a smoothing parameter of MS = .02N data

points. Table 6 shows the number of simulations correctly identified as AR(1) time series

models by each model selection criterion out of the 100 simulated AR(l) models for a given

length of the simulated time series N. On the left and right side of the table are the results

of the first and second experiments in which MARS attempted to identify the AR(1) time

series model (64) from the simulated data using P = 1 (left) and P = 4 (right) lagged

predictor variables and using M = 3 (left) and M = 8 (right), the maximum number of

subregions allowed in the forward-step MARS procedure.

Overall, the SC criterion performs the best at correctly identifying the simulated

data as the AR(1) time series model for all values of N, while the number of correctly iden-

tified models using GCV*, PC and AIC2 improves for increasing values of N and becomes

comparable to the performance of the SC criterion. The number of models correctly iden-

tified by A/C is low throughout the simulation experiment. Further investigation indicates

that most of the incorrectly identified models developed by AIC included additional model

terms, i.e., as discussed in Section B, AIC appears to overestimate the number of model
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TABLE 6. AR(1) MODEL SIMULATION: The number of AR(1) simulations correctly identi-
fied by each model selection criterion within MARS for increasing values of N. The
model parameters are p = .5 (top), .7 (middle) and .9 (bottom), and K = 0, with
a,2 = N(0, 1), and a minirmum span of MS = .02(N) data points between knots.
MARS attempted to identify the AR(1) model (64) from the simulated data using
P = 1 (left) and P = 4 (right) lagged predictor variables and using M = 3 (left)
and M = 8 (right), the maximum number of subregions allowed in the forward-step
MARS procedure. Each simulation consists of 100 replications. Overall, SC is the
best model selection criterion for correctly identifying the AR(1) simulations. Also,
the number of correctly identified models by GCV*, PC and AIC2 improves for
increasing values of N. The number of correctly identified models by AIC is low
throughout the simulation experiment.

P = landM= 3 P = 4andM 8

N 100 250 I500 750 100 250 500 750

p= .5

GCV" 55 85 94 99 38 56 76 89

AC 61 60 60 56 42 42 49 40

PC 61 85 92 99 38 54 75 87

SC 81 96 97 97 81 96 97 97

AIC2 67 75 85 86 45 63 80 84

p= .7

GCV" 63 81 98 99 36 51 86 91

AIC 62 58 49 56 47 43 39 41

PC 69 82 96 99 34 55 84 90

SC 92 96 99 97 92 96 99 97

AIC2 83 84 91 93 77 80 90 92

p= .9

GCV" 70 82 95 98 32 53 82 94

AIC 55 54 50 50 47 39 44 42

PC 74 81 94 98 29 50 85 91

SC 94 90 97 94 93 90 97 94

AIC2 95 87 97 94 94 87 97 94
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parameters. For example in the case that AIC was used to identify the AR(l) time series

model with p = .5 (top of Table 6) from the simulated data using P = 1 and M = 3,

only one of the simulations for N = 100 was identified as a constant model, the other 44

misideAtified models included at least an internal threshold value. This may be preferable

to not identifying any structure at all. A model identified using the AIC criterion in this

experiment may still closely approximate the output of the true underlying AR(1) time

series model. Nevertheless, this is an indication that the AIC criterion over-parameterizes

a proposed model.

Figures 40-45 are a series of box plots for the estimated coefficients of the simu-

lation models correctly identified as AR(1) time series models (as addressed in Table 6) by

each model selection criterion within MARS for increasing values of N. For each value of

N the boxplots represent the estimated model coefficients using, from left to right, GCV*,

AIC, PC, SC and AIC2. The estimates for A are given in the top set of boxplots, and

the estimates for K are given in the bottom set of boxplots. The true value of the model

coefficients, p = .5 (Figures 40-41), p = .7 (Figures 42-43), and p = .9 (Figures 44-45),

along with K = 0 are identified by the dashed line across each of the boxplots. At the

bottom of each boxplot is the length N of each simulated time series. By comparing the

true values of the model coefficients and the boxplots of the estimated values of the model

coefficients across increasing values of N, it is observed that the estimated coefficient values

for each of the model selection criterion tend to the true value as N increases.

2. Nonlinear Threshold Time Series Model Simulations

To observe the ability of each model selection criterion within MARS to capture

nonlinear threshold model characteristics, simulation of the 2-subregion threshold model

(Tong, 1983)

X, p1 X- 1 + C' if X 1.. _ t (65)
P2X-. + C, if X- 1 > t

was considered, where r = 1,2,... , N indexes the time series, p, and p2 are constant

coefficients, t = 0 and , is N(0,a!). As in Chapter II note that the nonlinear threshold

time series model (65) has an 'AR(1)-like' model in each subregion, which implies that, with
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Xcr ) - pX(r-l) + K +c for r - 1,2, ... ,N
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Figure 40. AR(1) MODEL SIMULATION: Boxplots of the estimates from each model selection
criterion for p = .5, K = 0 when the model selection criterion within MARS correctly
identified the data as from an AR(1) model (as reflected in Table 6). For increasing
values of N, MARS attempted to identify the AR(1) model (64) from the simulated
data using P = 1 lagged predictor variables and M = 3, the maxinum number of
subregions allowed in the forward-step MARS procedure, with o4 = N(0, 1) and a
minimum span of MS = .02(N) data points between knots. Each simulation consists
of 100 replications. The model selection criterion represented by the boxplots are,
from left to right and for each value of N; GCV*, AIC, PC, SC and AIC2. The
true value of the model coefficients, p = .5 and K = 0, are identified by the dashed
line across each of the boxplots.
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P]rl) + K + cr for r- 1,2,...,N
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Figure 41. AR(1) MODEL SIMULATION: Boxplots of the estimates from each model selection
criterion for p = .5,K = 0 when the model selection criterion within MARS correctly
identified the data as from an AR(l) model (as reflected in Table 6). For increasing
values of N, MARS attempted to identify the AR(1) model (64) from the simulated
data using P = 4 lagged predictor variables and M = 8, the maximum number of
subregions allowed in the forward-step MARS procedure, with o = N(0, 1) and a
minimum span of MS = .02(N) data points between knots. Each simulation consists
of 100 replications. The model selection criterion represented by the boxplots are,
from left to right and for each value of N; GCV, AIC, PC, SC and AIC2. The
true value of the model coefficients, p = .5 and K = 0, are identified by the dashed
line acrm each of the boxplots.
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34,) - pX(,) + K + c, for r- 1.2.....N
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Figure 42. AR(l) MODEL SIMULATION: Boxplots of the estimates from each model selection
criterion for p = .7, K = 0 when the model selection criterion within MARS correctly
identified the data as from an AR(1) model (as reflected in Table 6). For increasing
values of N, MARS attempted to identify the AR(1) model (64) from the simulated
data using P = I lagged predictor variables and M = 3, the maximum number of
subregions allowed in the forward-step MARS procedure, with o4 = N(O, 1) and a
minimum span of MS = .02(N) data points between knots. Each simulation consists
of 100 replications. The model selection criterion represented by the boxplots are,
from left to right and for each value of N; GCV ° , AIC, PC, SC and AIC2. The
true value of the model coefficients, p = .7 and K = 0, are identified by the dashed
line across each of the boxplots.
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Figure 43. AR(1) MODEL SIMULATION: Boxplots of the estimates from each model selection
criterion for p = .7,K = 0 when the model selection criterion within MARS correctly
identified the data as from an AR(1) model (as reflected in Table 6). For increasing
values of N, MARS attempted to identify the AR(1) model (64) from the simulated
data using P = 4 lagged predictor variables and M = 8, the maximum number of
subregions allowed in the forward-step MARS procedure, with u4 = N(O, 1) and a
minimum span of MS = .02(N) data points between knots. Each simulation consists
of 100 replications. The model selection criterion represented by the boxplots are,
from left to right and for each value of N; GCV*, AIC, PC, SC and AIC2. The
true value of the model coefficients, p = .7 and K = 0, are identified by the dashed
line acroes each of the boxplots.
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Figure 44. AR(1) MODEL SIMULATION: Boxplots of the estimates from each model selection
criterion for p = .9, K = 0 when the model selection criterion within MARS correctly
identified the data as from an AR(1) model (as reflected in Table 6). For increasing
values of N, MARS attempted to identify the AR(1) model (64) from the simulated
data using P = 1 lagged predictor variables and M = 3, the maximum number of
subregions allowed in the forward-step MARS procedure, with r,2 = N(O, 1) and a
minimum span of MS = .02(N) data points between knots. Each simulation consists
of 100 replications. The model selection criterion represented by the boxplots are,
from left to right and for each value of N; GCV*, AIC, PC, SC and AIC2. The
true value of the model coefficients, p = .9 and K = 0, are identified by the dashed
line across each of the boxplots.
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Figure 45. AR(I) MODEL SIMULATION: Boxplots of the estimates from each model selection

criterion for p = .9, K = 0 when the model selection criterion within MARS correctly
identified the data as from an AR(1) model (as reflected in Table 6). For increasing
values of N, MARS attempted to identify the AR(1) model (64) from the simulated
data using P = 4 lagged predictor variables and M = 8, the maximum number of
subregions allowed in the forward-step MARS procedure, with 4 = N(O, 1) and
a minimum span of MS = .02(N) between knots. Each simulation consists of 100
replications. The model selection criterion represented by the boxplots are, from left
to right and for each value of N; GCV*, AIC, PC, SC and AIC2. The true value
of the model coefficients, p = .9 and K = 0, are identified by the dashed line across
each of the boxplots.

130



the assumed constant variance for c, in both regions, X, can have a different variance in

each of the two subregions. Also for a threshold at t = 0, the expected number of sample

values in each subregion will be the same only if p, = -P2.

Two categories of experiments were conducted using the threshold model.

The first experiment required each model selection criterion within MARS to

estimate a model from the simulated data of the nonlinear threshold time series model using

one lag predictor variable X,-,, and using M = 4, the maximum number of subregions in

the forward-step MARS procedure. The first experiment's alternative models include the

constant model, linear autoregressive time series models, or nonlinear time series models

that have more than one internal threshold.

The second experiment required each model selection criterion within MARS to

estimate a model from the simulated data of the nonlinear threshold time series model

where up to four lag predictor variables, {Xyi}?.1, are allowed, and using M = 10, the

maximum number of subregions allowed in the forward-step MARS procedure. The second

experiment's alternative models include the constant model, linear and nonlinear autore-

gressive time series models with terms other than X,- 1 (e.g. X,- 2 ), or nonlinear time series

models with more than one internal threshold value on X,-,.

Simulation experiments were performed for various combinations of P1 and P2 and

for various values of the smoothing parameter MS, the minimum number of data points be-

tween knots on the same predictor variable. Table 7 and Figures 46-49 show the simulation

results for pl,p2 = .8,.4, and -. 6,.6, using u2 = N(o,.5) with the smoothing parameter

MS = .02(N) data points. Table 7 shows the number of simulations correctly identified

as threshold time series models by each model selection criterion for a given length of the

simulated time series N. On the left and right side of the table are the results of the first

and second experiments in which MARS attempted to identify the nonlinear threshold time

series model (65) from the simulated data using P = I (left) and P = 4 (right) lagged

predictor variables and using M = 4 (left) and M = 10 (right), the

Overall, the SC and AIC2 criteria perform the best at correctly identifying the

simulated data as the simple nonlinear threshold time series model (65). For the first

experiment (left), P = 1 and M = 4, all the model selection criteria appear to perform

equally well. In the second experiment (right), P = 4 and M = 10, the SC and AIC2
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TABLE 7. THRESHOLD MODEL SIMULATION: The number of threshold similations cor-
rectly identified by each model selection criterion within MARS for increasing values
of N. The model parameters are pl,p2 = .8, .4 (top) and -. 6, .6 (bottom), and t = 0,
with o,2 = N(O .5) and a mininmm span of MS = .02(N) data points between knots.
MARS attempted to identify the AR(1) model (64) from the simulated data using
P = 1 (left) and P = 4 (right) lagged predictor variables and using M = 4 (left)
and M = 10 (right), the maximum number of subregions allowed in the forward-
step MARS procedure. Each simulation consists of 100 replications. All the model
selection criterion perform well in identifying the threshold simulations.

P = landM =4 P = 4andM = 10

N 500 750 1000 1500 500 1750 J1000 1500

P1, P2 = .8,.4

GCV* 54 89 96 99 52 75 89 97

AC 77 94 93 96 60 71 72 79

PC 57 88 97 98 48 77 89 C

SC 61 78 89 97 61 78 89 97

AIC2 66 84 93 97 66 84 93 97

P_, P2 = -. 6,.6

GCV" 94 100 100 100 77 83 89 94

AIC 95 99 97 95 77 76 74 76

PC 93 100 100 100 78 80 87 92

Sc 94 100 100 0 94 100 100 100

AIC2 98 1 100 100 100 98 99 99 99
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criteria perform the best followed closely by the PC and GCV* criteria as the values of

N increase. However, the AIC criterion's performance in the second experiment does not

improve for increasing values of N and falls behind at correctly identifying the nonlinear

threshold time series model (65). Again, as in the experiments with the AR(l) simulations,

the majority of models incorrectly identified by the AIC criterion included additional terms

i.e., A/C appears to overestimate the number of parameters in the model.

Figures 46-49 are a series of box plots for the estimated coefficients of the sim-

ulations correctly identified as threshold time series models (as addressed in Table 7) by

each model selection criterion within MARS for increasing values of N. For each value of

N, the bxplots represent the estimated model coefficients using, from left to right, GCV*,

AIC, PC, SC and AIC2. The estimates for A, (top), A2 (middle) and i (bottom) are given.

The true value of each model coefficient, p1,P2 = .8,.4 (Figures 46-47), P1,P2 = -. 6,.6

(Figures 48-49), and t = 0, are identified by the dashed line across each of the box plots.

At the bottom of each boxplot is the length N of each simulated time series. It is observed

that the estimated values of the model coefficients tend to their true value as N increases.

Due to several outliers, the performance of PC and GCV" at estimating P2 are initially

disappointing.

3. Summary of AR(1) and Threshold Model Simulations

Overall, SC was the best criterion at identifying and selecting the model coeffi-

cients from the simulated data of these simple AR(l) and nonlinear threshold time series

models. The SC criterion was consistent for all values of the AR(l) and threshold model

coefficients while the other criterion at times had difficulty especially for small N (see e.g.

Table 6 with p = .5). The performance of the SC criterion was followed next by the AIC2

criterion and then the PC and GCV" criteria. In all cases with the exception of AIC,

the number of correctly identified simulation models improved for increasing values of N.

Also for increasing values of N, when the AR(1) or nonlinear threshold time series model

was correctly identified, the precision of the estimates of the model coefficients improved

for each model selection criterion. It was noted that when AIC incorrectly identified a

model, it added additional terms to the model (in almost all cases), i.e., AC was able to
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Figure 46. THRESHOLD MODEL SIMULATION: Boxplots of the estimates for P1, P2 = -8.4,
and t = 0 when the model selection criterion within MARS correctly identified the
data as a threshold model (as reflected in Table 7). For increasing values of N, MARS
attempted to identify the threshold model (33) from the simulated data using P = I
lagged predictor variables and M = 4, the maximum number of subregions allowed
in the forward-step MARS procedure, with v2 = N(O, .5) and a minimum span of MS
= .02(N) data points between knots. Each simulation consists of 100 replications.
The model selection criterion represented by the boxplots are, from left to right and
for each value of N; GCV, AIC, PC, SC and AIC2. The true value of the model
coefficients, P, = .8,p2 = .4 and t = 0, are identified by the dashed line across each
of the boxplots.
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Figure 47. THRESHOLD MODEL SIMULATION: Boxplots of the estimates for Pl, P2 = .8.4,
and t = 0 when the model selection criterion within MARS correctly identified the
data as a threshold model (as reflected in Table 7). For increasing values of N, MARS
attempted to identify the threshold model (33) from the simulated data using P = 4
lagged predictor variables and M = 10, the maximum number of subregions allowed
in the forward-step MARS procedure, with 4 = N(O, .5) and a minimum span of MS
= .02(N) data points between knots. Each simulation consists of 100 replications.
The model selection criterion represented by the boxplots are, from left to right and
for each value of N; GCV', AIC, PC, SC and AIC2. The true value of the model
coefficients, Pi = .8 ,p2 = .4 and t = 0, are identified by the dashed line across each
of the boxplots.
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Figure 48. THRESHOLD MODEL SIMULATION: Boxplots of the estimates for pi, p2 --. 6.6,
and t = 0 when the model selection criterion within MARS corrctly identified the
data as a threshold model (as reflected in Table 7). For increasing values of N, MARS
attempted to identify the threshold model (65) from the simulated data using P = I
lagged predictor variables and M = 4, the maximum number of subregions allowed
in the forward-step MARS procedure, with i4 = N(0, .5) and a minimum span of MS
= .02(N) data points between knots. Each simulation consists of 100 replications.
The model selection criterion represented by the boxplots are, from left to right and
for each value of N; GCV*, AIC, PC, SC and AIC2. The true value of the model
coefficients, pi = -. 6, p2 = .6 and t = 0, are identified by the dashed line across each
of the bacplots.
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Figure 49. THRESHOLD MODEL SIMULATION: Boxplots of the estimates for Pl,P2 = -. 6.6,
and t = 0 when the model selection criterion within MARS correctly identified the
data as a threshold model (as reflected in Table 7). For increasing values of N, MARS
attempted to identify the threshold model (65) from the simulated data using P = 4
lagged predictor variables and M = 10, the maximum number of subregions allowed
in the forward-step MARS procedure, with 4 = N(0, .5) and a minimum span of MS
= .02(N) data points between knots. Each simulation consists of 100 replications.
The model selection criterion represented by the boxplots are, from left to right and
for each value of N; GCV*, AIC, PC, SC and AIC2. The true value of the model
coefficients, Pi = -. 6,p2 = .6 and t = 0, are identified by the dashed line across each
of the boxplots.
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identify structure, although more than was actually present, which agrees with work done

by Schwarz (1978).

Another approach for determining the relative ability of each model selection

criterion is to evaluate their performance at approximating the response variable (input) in

terms of the explanatory variables (output). In this regard, the next section investigates

the ability of each model selection criterion to approximate the fitted values and limit cycle

from ASTAR Model 9 of the Wolf sunspot numbers.

D. SIMULATIONS OF ASTAR MODEL 9 OF THE WOLF SUNSPOT

NUMBERS

As an illustration of the relative ability of each model selection criterion within MARS

to closely approximate a representation of an actual time series we used the fitted values

and limit cycle of ASTAR Model 9 of the Wolf sunspot numbers (66). In the first part

of this section the Wolf sunspot numbers and the fitted values and limit cycle from AS-

TAR Model 9 are briefly reviewed. (Recall that Chapter II discussed the use of MARS for

modeling and prediction of the Wolf sunspot numbers, an actual time series with periodic

behavior. The result was ASTAR Model 9, which when used for prediction was a consid-

erable improvement over previous existing nonlinear models of the Wolf sunspot numbers.)

Next, two simulations are used to examine the ability of each model selection criterion to

closely approximate the fitted value and limit cycle time series of ASTAR Model 9 from the

lagged values of each respective time series with additive N(0,1) noise.

The sunspot data and the fitted values of ASTAR Model 9 (Figure 50) are quite

'periodic' but have nonsymmetric cycles with extremely sharp peaks and troughs. The cycles

generally vary between 10 and 12 years with the greater number of sunspots concentrated in

each descent period versus the accompanying ascent period. The average (ascent/descent)

period is (4.6/6.6) years for the sunspot number data and (4.5/6.4) years for the fitted

values from ASTAR Model 9. The functional form of ASTAR Model 9 is
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f2.711 + .960X,_1 + .332(47.0 - Xr..5 )+ - .257(59.1 - X-)

X = - .03,lX- - 26.0)+ + .017X,-1(44.0 - X,-.3)+ (66)

+ .004X,-1(26.0 Xa,...)+(X - 41.0)+ +

where (x)+ is a plus function i.e., a function which takes value x if x > 0 and takes values

0 otherwise, and c,. (from the analysis in Chapter II) is assumed to be Gaussian noise with

zero mean and variance ac2. Model 9 has 14 parameters with 8 terms (a constant term

with 3 one-way, 3 two-way and 1 three-way interactions) and 6 threshold valu:!s (1 each on

X,- 2 , X,-.3, X,-..4, and X1,-.. and 2 on X,-5). Note that the MARS algorithm generating

ASTAR Model 9 uses 20 lagged predictor variables that are permitted to form 1, 2, and 3-

way interactions during a maximum of M = 15 steps of the forward-step MARS algorithm.

The minimum span between threshold knots is MS =18 data points.
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formance of ASTAR Model 9 and other models of the yearly sunspot numbers.
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One of the interesting aspects of ASTAR models is their ability to create models with

limit cycles from periodic-like data such as the Wolf sunspot numbers. A limit cycle may be

thought of as a stationary state of sustained oscillations (Tong, 1985). Figure 51 shows the

137 year limit cycle of ASTAR Model 9 of the Wolf sunspot numbers with its ascent and

descent periods. The limit cycle for Model 9 is asymmetric with a range in amplitude of 17.7

to 94.5 and an average ascent/descent period of 4.3/6.3 years versus the 4.6/6.6 years for

the actual yearly sunspot numbers from 1700 to 1920. In comparing Model 9's limit cycle

(Figure 51) with the real yearly sunspot data (Figure 50) note that the standard deviation

of the fitted residual's error variance is estimated as (MSS) 1/2 - 10.69 sunspots.

Ascent - 4.5.4.5.4.5.4.4.4.4.4.4.5
Descent - 6.6.6.6.6.6.7.6.7,6.7.6.6

i I ,

ii , ii * fttill

Ii i

0 I I I;

0 40 80 33o

Figure 51. The limit cycle for ASTAR Model 9 of the yearly Wolf sunspot numbers (1720-1920).
The limit cycle is 137 years long with the indicated ascent and descent periods. The
limit cycle is generated using ASTAR Model 9 initialized with the yearly sunspot
numbers (1700-1719). The 'subcycles' have lengths of 10 or 11 years with 4 or 5
years per ascent period and 6 or 7 years per descent period.

1. Simulations of ASTAR Model 9

Two different simulations using ASTAR Model 9 were developed to evaluate each

model selection criterion within MARS. The first simulation experiment used the fitted
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values of Model 9 (Figure 50) plus additive N(0,o,) noise to examine the ability of each

criterion to model and estimate a time series with rapidly changing structure. The second

experiment used the limit cycle produced by Model 9 (Figure 51) plus additive N(O,o,)

noise to examine the ability of each criterion to model and estimate a time series with

repetitive structure. The objective of these simulations are two fold; to observe how well

each model selection criterion estimates the fitted values and the limit cycle of ASTAR

Model 9 and how consistent are these estimates. Mean square error (MSE) was used as an

overall measure of performance of each model selection criterion.

a. Simulating the Fitted Values of ASTAR Model 9

In this first experiment simulations of the fitted values of ASTAR Model 9

of the Wolf sunspot numbers were considered. Using the fitted values of ASTAR Model 9

to represent f(X), independent N(0,1) noise was added for the 221 year period from 1700

to 1920. The resulting values were used as the time series for input to the MARS program.

The program parameters in MARS during each simulation remained the same as those used

to develop ASTAR Model 9; P = 20 lagged predictor variables, a maximum level of MI =

3 interactions i.e., the models were permitted to form 1, 2, and 3-way interactions, and a

minimum span between knots on a lagged predictor variable of MS = 18 data points. The

data values from 1700 to 1719 were used for model initialization. A total of 50 simulations

were performed for each different model selection criterion for different values of M that

ranged from 5 to 30 (M is the maximum number of forward steps in the MARS algorithm).

Note that a low value of M (e.g. 5 or 10) does not adequately permit a model selection

criterion in MARS to find the structure of Model 9's fitted values during the forward-step

algorithm. In contrast, a high value of M (e.g. 25 or 30) does permit the model selection

criterion to find the structure of Model 9's fitted values and requires the backward-step

algorithm to trim excess terms from the model.

Table 8 and Figures 52 and 53 show examples of the results from the sim-

ulations of the fitted values of ASTAR Model 9. For each value of M and each model

selection criterion, the bias and variance for each estimate of the 201 (1720-1920) actual

fitted sunspot numbers from ASTAR Model 9 was computed, using the results from the 50

simulation runs. The values in Table 8 represent the average across - = 1,...,201 for the

absolute bias, variance and MSE of the estimates of the fitted values from ASTAR Model 9
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using each model selection criterion. As expected, bias dominated the MSE due to the

rapidly changing structure in the fitted values from Model 9. Also, as the models in MARS

are permitted to become more complex (M increases) the bias decreases and, in general,

the variance of the estimates of the fitted values from Model 9 increase.

Figures 52 and 53 are plots of the bias [points] and the range of a 95%

confidence interval centered about zero ( 1.64o/N-5 ) (lines] for each of the 201 estimates

of the fitted values of Model 9 from the 50 simulations for each identified model selection

criterion. In Figure 52 are the results for the model selection criteria AC (left column)

and GCV* (right column) with M = 10 (top) and M = 25 (bottom). In Figure 53 are the

results of the model selection criteria for AC (left column) and PC (right column) with

M = 10 (top) and M = 25 (bottom). Note the difference in the size of the bias and the

size of the confidence interval between the values of M in the top and bottom plots of each

Figure, the bias for each estimate being, in general, smaller for M = 25 while the size of

the confidence interval generally increases. Using Table 8 the AIC criterion is better than

GCV" for both M = 10 and M = 25 while AC is better than PC for M = 10 but they

appear equivalent for M = 30. Looking between the plots of A/C and GCV" (Figure 52)

for M = 10 (top plots) note the high positive bias in several estimates of the fitted values

using GCV" while for M = 25 (bottom plots) note the spread of the CI using GCV*.

Looking between the plots of AIC and PC (Figure 53) for M = 10 (top plots) note the

high positive bias in several estimates of the fitted values using PC. By looking across and

down in Figures 52 and 53 and using Table 8 it is observed that the MSE of each model

selection criterion is improving for increasing values of M although the rate of improvement

decreases as M increases.

Using the simulation results from Table 8 and plots like those in Figures

52 and 53, AC is the best model selection criterion for estimating the fitted values of

ASTAR Model 9 using MSE as the measure of performance. In Table 8, for each value of

M the average absolute bias and average MSE across r for the AIC criterion is, in general,

lower than the other model selection criteria. Recall that AIC tends to over-parameterize

a model, which may explain AIC's performance for this experiment. The AC criterion's

performance is closely followed by the PC, SC, and GCV* criteria. AIC2's performance

is extremely poor throughout the experiment.
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TABLE 8. SIMULATION of the FITTED VALUES of ASTAR MODEL 9: The average across
T"= 1,..., 201 of the absolute bias, variance and MSE of the estimates for the fitted
values of ASTAR Model 9 from each model selection criterion within MARS using
50 simulations for increasing values of M, the maximum number of forward-step
subregions permitted in a MARS model. The MARS parameters for each of the 50
simulations and each model selection criterion are P = 20, and ol = N(O, 1) with a
mininmum span of MS = 18 data points between threshold knots. Each simulation
consisted of estimating the 201 fitted values from ASTAR MODEL 9 of the Wolf
sunspot numbers with additive N(0,1) noise.

Average Absolute Bias

[M 5 I01 151 252 1 30

GCV. 12.07 9.96 8.93 7.84 7.23 6.78

IC 11.53 9.66 8.40 7.61 6.98 6.48

PC 12.05 9.96 8.84 7.73 7.14 6.49

Sc 11.59 9.92 8.72 8.01 7.55 7.34

AIC2 11.94 10.81 11.56 11.54 11.66 11.77

Average Variance

GCV" 0.408 0.750 0.949 1.040 1.043 1.024

AC 0.428 0.838 0.849 0°863 0.875 0.884

PC 0.399 0.750 0.942 1.028 0.988 0.945

SC 0.423 0.750 0.905 0.922 1.002 0.991

A/C2 0.480 0.687 0.929 1.005 0.978 0.967

AVERAGE MSE

GCV* 245.5 173.5 132.7 104.0 87.6 75.5

AIC 235.1 158.4 117.8 96.8 82.0 70.9

PC 244.8 173.5 130.7 101.1 84.6 69.7

SC 237.3 172.6 126.4 107.6 95.4 89.9

AC2 251.8 239.0 223.0 220.6 223.9 228.5
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Figure 52. SIMULATION of the FITTED VALUES of ASTAR MODEL 9: The bias (points)
and a 95% confidence interval centered about zero (lines) for the estimates of the
fitted values of ASTAR Model 9. The simulation experiment used 50 simulations
of the 221 fitted values from ASTAR Model 9 of the Wolf Sunspot numbers with
additive N(0,1) noise. The plots in this figure are for the AIC (left] and GCV* [right]
model selection criteria using M = 10 [top] and M = 25 [bottom], the maximnum
number of subregions permitted in the forward step of the MARS algorithm.
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b. Simulations of the Limit Cycle from ASTAR Model 9

In the second experiment we considered simulations of the limit cycle de-

veloped using ASTAR Model 9 of the Wolf sunspot numbers. Using (66) and the Sunspot

numbers from 1700-1719 for initialization, Model 9's limit cycle is created by driving the

model without noise. The resulting 137 year limit cycle is shown at Figure 51. Using the

limit cycle of ASTAR Model 9 to represent f(X), independent N(0,1) noise was added to

431 limit cycle data values (3 cycles of 137 values and 20 values for initialization). The

resulting values were used as the time series for input into the MARS program. The pro-

gram parameters in MARS during each simulation remained the same as those used to

develop ASTAR Model 9; P = 20 lagged predictor variables, a maximum level of MI = 3

interactions, i.e., the models were permitted to form 1, 2, and 3-way interactions, and a

minimum span between variable partitions of MS = 18 data points. A total of 50 simula-

tions were performed for each model selection criterion for different values of M that range

from 5 to 15. Fewer number of forward steps M are required in this experiment due to the

repetitiveness of Model 9's limit cycle.

Table 9 and Figures 54 and 55 show examples of the results from the second

simulation experiment. For each value of M and each model selection criterion, the bias and

variance for each estimate of the 411 limit cycle values was computed, using the results from

the 50 simulation runs. The values in Table 9 represent the average across r = 1,...,411 of

the absolute bias, variance and MSE of the estimates of the limit cycle values from ASTAR

Model 9 using each model selection criterion. The bias again dominates the MSE although

it is not as significant as the bias in the estimates of the fitted values from ASTAR Model 9

(Table 8). Note again that as the models in MARS are permitted to become more complex

(M increases) the bias decreases. Also, the variance of the estimates for the limit cycle

values are, in general, slowly decreasing.

Figures 54 and 55 are plots of the bias [points] and the range of a 95%

confidence interval centered about zero (l1.64ar/N- 5 ) [lines] for each of the 411 estimates

of ASTAR Model 9's limit cycle using the 50 simulations and the identified model selection

criterion. Figure 54 shows the results for AC (left column) and GCV" (right column) with

M = 5 (top) and M = 15 (bottom). Figure 55 shows the results for PC (left column) and

GCV" (right column) with M = 10 (top) and M = 30 (bottom). Again, note the difference
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TABLE 9. SIMULATION of the LIMIT CYCLE VALUES of ASTAR MODEL 9: The average
across T = 1,... , 411 of the absolute bias, variance and MSE of the estimates for the
limit cycles values from ASTAR Model 9 for each model selection criterion within
MARS using 50 simulations and increasing values of M, the maximum number of
forward-step subregions permitted in a MARS model. The MARS parameters for
each of the 50 simulation are P = 20, v2 = N(0, 1), with a minimum span of MS = 18
data points between model threshold knots. Each simulation consisted of estimating
411 values of ASTAR Model 9's limit cycle with additive N(0,1) noise (3 limit cycles
of 137 data values).

Average Absolute Bias Average Variance Average MSE

M I 10i 15 5 10 1 15 1 5 10J_ 15

GCV* 2.42 1.73 1.46 0.12 0.11 0.10 9.41 4.98 3.59

A/C 2.21 1.61 1.44 0.14 0.10 0.09 8.10 4.32 3.48

PC 2.42 1.74 1.47 0.12 0.11 0.10 9.41 5.00 3.63

Sc 2.21 1.63 1.53 0.14 0.10 0.10 8.03 4.45 3.87

AIC2 2.21 1.94 1.82 0.14 0.13 0.14 7.95 5.83 5.21

in the size of the bias and the size of the confidence interval between the values of M in the

top and bottom plots of each Figure; the bias and the variance for each estimate being, in

general, smaller for M = 15. By looking across and down in Figures 54 and 55 and using

Table 9 it is again observed that the MSE of each model selection criterion is improving for

increasing values of M although again the rate of improvement decreases as M increases.

Using the simulation results from Table 9 and plots like those in Figures 54

and 55, AIC is the best model selection criterion for estimating the limit cycle values of

ASTAR Model 9 using MSE as the measure of performance. The AIC criterion's perfor-

mance is closely followed by the SC, PC and GCV*. AIC2's performance, initially good

at M = 5, is again poor for increasing values of M.

c. Summary of ASTAR Model 9 Simulations

The AC criterion performed very well for the simulations of the fitted values

and the limit cycle of ASTAR Model 9. The performance of the AIC criterion was followed

closely by the SC, PC and GCV " criteria, with SC initially doing better for lower values

of M. Overall, the AIC2 criterion performed poorly throughout the experiment.
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and a 95% confidence interval centered about zero (lines) for the estimates of ASTAR
Model 9's limit cycle. The simulation experiment used 50 simulations of 411 values
of the linit cycle developed from ASTAR Model 9 of the Wolf Sunspot numbers with
additive N(0,1) noise. The plots in this figure are for the AIC [left] t.id GCV* [right]
model selection criteria using M = 5 [top) and M = 15 [bottom], the maximam
number of subregions permitted in the forward step of the MARS algorithm.

148



2

I 0 m* Vl4 asl d a amp for WV ub.m a md U-06

mu a am ow V= Vah M a5 =a 0.2 am =a CS2 1W W9c Vk .9 a me A. a

t

I * 0 j

I 6

Figure 55. SIMULATION of the LIMIT CYCLE from ASTAR MODEL 9: The bias (points)
and a 95% confidence interval centered about zero (lines) for the estimates of ASTAR
Model 9's limit cycle. The simulation experiment used 50 simulations of 411 values
of the limit cycle developed from ASTAR Model 9 of the Wolf Sunspot numbers with
additive N(0,1) noise. The plots in this figure are for the PC Deft] and GCV" [right]
model selection criteria using M = 5 (top] and M = 15 (bottom], the mrxinmm
number of subregions permitted in the forward step of the MARS algorithm.
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E. SMASTAR MODELING OF THE VATNSDALSA RIVERFLOW USING

MARS 3.0

In Chapter's II and III the GCV* criterion in MARS 2.0 was used to develop models of

the Sunspot numbers and the Vatnsdalsa riverfiow system. Chapter IV discussed the MARS

3.0 program and its modifications to facilitate time series analysis. One of the modifications

is an input variable, MSC, that allows the selection of different model selection criteria for

use in the MARS algorithm. In this section the objective is three-fold; first to discuss

the use of the model selection criteria investigated in Sections C and D of this chapter

in conjunction with the new capabilities of MARS 3.0, second to determine if the model

selection criterion in MARS 3.0 can be used to improve Model ICE486 of the Vatnsdalsa

riverflow system, and finally to study the performance of the model selection criterion in

a more difficult setting. Note that the AIC2 criterion was not investigated in this section

due to its poor performance in Section D of this chapter.

Using MARS 3.0 and the GCV*, AIC, PC and SC model selection criteria, 2 Year

SMASTAR Models of the Vatnsdalsa Riverflow were developed using 731 days (2 years) of

riverflow for model development and the remaining 355 days for prediction. Models using

each criterion were permitted to form 1, 2, and 3-way interactions during a maximum of

M = 25 and 50 forward steps of the MARS algorithm as compared to the 10 to 20 forward

steps permitted during the Vatnsalsa riverflow modeling discussed in Chapter III. The

minimum span between threshold values for a single predictor variable was 50 and 75 values.

The SMASTAR models were developed using a total of 27 predictor variables (9 lagged

predictor variables for each time series); lagged riverflow X,-1 to X,- 9 , lagged precipitation

Y- 1 to Y,-s, with and without the natural log transformation Y, = In (1 + Y_i), and

lagged temperature Z,- to Z,- 9. The first 9 data values of each time series were used for

initialization.

Analysis of the fitted values and residuals of the models selected by the GCV*, AIC

and PC criteria indicate that these model selection criteria tend to create very large models

for the riverflow if the number of forward steps of the MARS algorithm is set high i.e., when

compared to the SC criterion, the GCV*, AIC and PC criteria do not eliminate many terms

from the SMASTAR model during the backward step of the MARS algorithm. One result

of these large models is that the fitted residuals tend to have significant autocorrelation,
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possibly due to overlitting. Also, when used for prediction, models developed using the

GCV*, PC and AIC criteria tend to have unpredictable results i.e., violent changes in

behavior that at times can lead to negative riverftow (again this may be due to overfitting).

Use of the GCV*, PC and AIC criteria necessitate judicious use of the model pa-

rameter that sets the maximum number of forward steps in the MARS algorithm. For

example, Model ICE486 developed in Chapter III using the GCV" criterion had 13 model

terms during only 15 forward steps of the MARS algorithm. Yet in this experiment a model

developed using GCV" had 44 model terms during M = 50 forward steps of the MARS

algorithm. When compared to the models developed using the SC criterion, the GCV"

criterion appears to over parameterize the SMASTAR model.

This experiment also indicates that the final size of the model is due, in part, to the

relationship between the two parts of each model selection criterion (model complexity and

model lack-of-fit). Recall that the apparent model over-parameterization of linear time

series models by the A/C criterion led to the development of the SC criterion (Schwvarz,

1978), which increases the weight of the model complexity function by a factor of .5 In(N).

Thus for a given value of N, to add a term to a SMASTAR model and improve (decrease)

the SC criterion's 'score' requires a greater decrease in the model's lack-of-fit than required

using the AIC criterion.

Equation (67) details SMASTAR Model ICE SC160 for the Vatnsdalsa riverflow for

the years 1972 and 1973, developed using the SC model selection criterion. Model ICE

SC160 for the Vatnsdalsa riverflow uses the natural log transformed precipitation and was

permitted to form 1, 2, and 3-way interactions during a maximum of M = 50 forward steps

of the forward step MARS algorithm. The minimum span between threshold values for a

single predictor variable was 50 data values. SMASTAR Model ICE SC160, which should

be compared to SMASTAR Model ICE486 (equation 54), is
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4.13 + 0.1940(X,_ 1 - 3.98)+(X,- 2 - 8.36)+

- 0.0003(X,_1 - 3.98)+(X- 2 - 8.36)+(X,- 6 - 3.98)+

- 4.572(.182 - Y-2)+

+ 0.574Y*_1 (Y_ 4 - 1.53)4

- 0.662(X,- 3 - 9.02)+(1.53 - Y,.-4)+

-+ 1.211(X7-1 - 3.98)+(Y_- - .262)+

- 1.321(X_1 - 3.98)+(Y7'_ 2 - 1.07)+

+: 1.035(X,-. - 3.98)+(1-07 - Y7-2)+

-0.145(X,-1 - 3.98)+(1.07 - Y,*_2)+(Y_4 - 1.03)+ (67)

+ 0.085(Xr_1 - 3.98)+(8.36 - Xr-2)+Yr*_l

+ 0.023(X-r- - 3.98)+(X7- 2 - 8.36)+(.262 - Y -s)+

+ .0146(X 7 -1 - 3.98)+(3.00 - Z,-I)+

- .0035(X-_1 - 3.98)+(X7- 2 - 3.98)+(3.00 - Z,-i)+

- .0176(X7- 1 - 3.98)+(Z-l - 3.00)+(4.80 - Z,)+

+ .0084(X7-1 - 3.98)+(Z-1 + 1.60)+(3.50 - Z,-e)+

- .0033(X- 1 - 3.98)+(X- 3 - 3.98)+(Zr_1 + 1.60)+

- .0081(X-l - 3.98)+(X- 2 - 8.36)+(Z7- 2 + 22.4)+

Model ICE SC160 (Figure 56) has 32 parameters that includes 19 terms (a model

constant term and 1 one-way, 7 two-way and 10 three-way interactions) and 13 threshold

values (1 each on X,- 2, X-r- 3 , X7-4, Yr-s, Z-s, Z-7), 2 on Y7*-4 and Z7_1 and 3 on Y,'-2-

The standard error of the fitted residuals is a, = 1.10m 3/sec. for Model ICE SC160 versus

a, = 1.27m3 /sec. for Model ICE496 developed using GCV*. Figure 56 shows plots of the

fitted values and residuals of Model ICE SC160 for the Vatnsdalsa riverflow data during

1972 and 1973.

Model ICE SC160, Figure 56, appears to equally overfit and underfit the peaks and

troughs as it captures the general structure of the riverflow data. Analysis of the normal

probability plot (not shown) shows that the fitted residuals are still slightly skewed with
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the extremely heavy tails that have occurred with previous modeling efforts of this type

riverflow data. The fitted residual autocorrelation function and estimated normalized pe-

riodogram plots are shown at Figure 57. As with Model ICFA86 using GCV* (Figure 31)

the autocorrelation function for the fitted residuals reveals no evidence of short term an-

tocorrelation. Also, as with Model ICE486, we could consider the residuals independent if

they were normally distributed because the normalized cumulative spectrum of the fitted

residuals falls entirely within the 90% K-S bounds from the cumulative spectrum for white

noise. However, again the fitted residuals display a pattern of high residual values during

periods of high riverflow (Figure 56), evidence of the non-normality of the fitted residuals.

To investigate the predictive performance of Model ICE SC160, developed and dis-

cussed above, Model ICE SC160 and the riverflow, precipitation and temperature data

during the year 1974 was used to perform a 1 day forward-step ahead prediction of the

Vatnsdalsa riverflow. Overall the predictions of Model ICE SC160 are only slightly differ-

ent than the 1 day forward-step ahead predictions of Model ICE486 using GCV*. Figures

58-59 contain plots of the actual versus 1 day forward-step ahead predictions of Model ICE

SC160 and the fitted residuals for the Vatnsdalsa riverflow during the year 1974. Again, the

1 day forward-step ahead predictions were performed using coefficient updating and a fixed

coefficient model. In both cases the model predictions react very well to both the extreme

spring transition and low riverflow that occurs later in the year. However, as expected

the I day forward-step ahead predictions using coefficient updating (Figure 58) are an im-

provement over the 1 day forward-step ahead predictions using the fixed coefficient model

(Figures 59). The standard error of the fitted residuals using coefficient updating is a, =

2.08 m 3/sec. for Model ICE SC160 using SC versus a, = 2.11 m 3 /sec. for Model ICE486

using GCV*. The standard error of the fitted residuals using the fixed coefficient model is

a, = 2.67 m3/sec. for Model ICE SC160 using SC versus a, = 2.37 m3 /sec. for Model

ICE486 using GCV*. The predictive capability of the two models is similar. Note that

Model ICE SC160 has a slightly smaller fitted residual variance than Model ICE486 for the

coefficient updating method while the opposite is true for the fixed coefficient method. How-

ever, Model ICE486 was developed in a restrictive environment with only M = 15 forward

steps of the MARS algorithm while Model ICE SC160 was developed in an unrestrictive

and thus preferable environment with M = 50 forward steps of the MARS algorithm.
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Figure 57. Fitted Residual Plots from SMASTAR Model ICE SC160. The autocorrelation func-
tion (first 20 lags) [top] and the normalized cumulative periodogramn [bottom] of the
fitted residuals from SMASTAR Model ICE SC160 of the Vatnsdalsa River system
for the period 1972-1973. The top plot, with approximate 95% individual confi-
dence bounds, shows that no apparent autocorrelation exists in the fitted residuals.
Also the K-S bounds in the normalized cumulative periodogram plot indicates no
departure from a flat spectrum, so that if the residuals are normally distributed, the
residuals are independent.
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Vatnsdalsa River Data (1974)
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Figure 58. The actual versus 1-step ahead predictions and errors from MODEL ICE SC160 for
the Vatnadalsa, rverflow data (1974) with coefficient updating (coefficient update).
The standard error of the fitted residuals e, = 2.08 n8 /5cc. for Model ICE SC160
versus o , = 2.11 m3/acc. for Model ICE486 using GCV .
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Vatnsdalsa River Data (1974)
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Figure 59. The actual versus 1-step ahead predictions and errors from MODEL ICE 160 for the
Vatnsdalsa riverflow data (1974) without coefficient updating (fixed model). The
standard error of the fitted residuals or, - 2.67 m3 /sec. for Model ICE SC160 versus
f, = 2.36 m3/Sec. for Model ICE486 using GCV*.
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F. SUMMARY

This chapter examined the problem of model dimension and variable selection when

using adaptive regression splines to develop a nonlinear autoregressive model for a univariate

or semi-multivariate time series system. Five model selection criteria, GCV*, AIC, AIC2,

PC and SC, were examined to determine which performed best within MARS. The results

indicate that SC is the best model selection criterion for use in MARS for a time series

setting. The SC criterion (Schwarz, 1978; Rissanen, 1978) consistently performed well for

all experiments conducted in this chapter and appears to best accommodate the forward and

backward stepwise MARS strategy for model development. In contrast, the AIC criterion

appeared to over parameterize models which agrees with findings by Schwarz (1978) and

others. Model over-parameterization was also a characteristic of the PC and GCV" criteria

when modeling the Vatnsdalsa riverflow in an 'unrestricted' environment (large M, the

number of forward steps in the MARS algorithm). The AIC2 criterion performed very

poorly during simulations of the fitted values and limit cycle of ASTAR Model 9 of the

Wolf sunspot numbers.

Thus the SC criterion is recommended for model aelection when MARS is applied in

a time series setting.

158



VI. THESIS SUMMARY

MARS is a new nonparametric regression modeling methodology, due to Friedman,

that utilizes low-order regression spline modeling and a modified recursive partitioning

strategy to exploit the localized low-dimensional behavior of the data used to construct

1(z). Given a set of predictor variables, MARS fits a model in the form of an expansion in

product spline basis functions of predictors chosen during a forward and backward recursive

partitioning strategy. Although MARS is a computationally intensive regression modeling

methodology, it provides a systematic (automatic) method for deriving nonlinear threshold

models for high-dimensional data. The MARS models are naturally continuous in the

domain of the predictor variables, and can have multiple partitions and predictor variable

interactions.

Within MARS by letting the predictor variables for the rth value in a time series

{X 7) be its lagged values, i.e., X,- 1 , X,- 2, ... , X,-p, one obtains an adaptive spline

threshold autoregressive (ASTAR) model, a new method for systematic nonlinear modeling

of time series that extends the threshold autoregressive (TAR) model due to Tong (1985).

Simulations of autoregressive and nonlinear threshold models are used to show the ability

of ASTAR to model simple time series. A significant feature of ASTAR models when

modeling time series data with periodic behavior is its ability to produce continuous models

with underlying sustained oscillations (limit cycles). The initial analysis of the yearly Wolf

sunspot numbers (1700-1890) and (1700-1920) using ASTAR produced several models with

underlying limit cycles. When used to predict the yearly sunspot numbers (1921-1955), the

ASTAR models are a significant improvement over existing Threshold and Bilinear models.

Within MARS by letting the predictor variables be not only the lagged values of the

time series being modeled and predicted, but also the lagged values of other related time

series, results in a semi-multivariate adaptive spline threshold autoregressive (SMASTAR)

model. This investigation indicates that SMASTAR models appear well suited for tak-

ing into account the complex nonlinear interactions among multivariate, cross-correlated,

lagged predictor variables of a time series system. Using the Vatnsdalsa riverflow system
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as an example, Tong et al. (1985) showed that normal linear autoregressive models were

incapable of modeling the complexities for this type time series system. Also the method-

ology and structure of semi-multivariate TAR models appear incapable of capturing these

complexities in a parsimonious model. However, the SMASTAR model appears to consider

the complex relationships between the cross-correlated predictor variables, and seems ca-

pable of providing semi-multivariate nonlinear time series models for prediction, even in

non-normal situations such as riverflow data. SMASTAR model development, although

computationally intensive, is also quite systematic.

An important aspect of any overall regression modeling effort is the interpretation and

analysis of a regression model. However, the functional form of an ASTAR model, with

its combination of different predictor variables and multiple threshold values, makes its

straightforward interpretation and analysis difficult. In this regard a graphical represen-

tation was developed to permit the interpretation and analysis of ASTAR models. It was

shown that this graphical representation can be used to analyze the use for and contribution

of each of the terms in an ASTAR model. The extension of this graphical representation

to SMASTAR models is difficult. However, it was shown that the tree-like structure of a

MARS model can be used to analyze the use for and contribution of each of the terms in a

SMASTAR model.

The current model selection criterion in MARS is GCV*, a modified form of generalized

cross validation. However, other model selection criterion, such as Akaike's Information

Criterion (AC), have been suggested for model selection in the standard linear time series

setting. In this regard, simulations were used to investigate GCV" and several other model

selection criterion for use within MARS. The results indicate that the Schwarz-Rissanen's

SC criterion and Amemiya's PC criterion improve the model selection over GCV* when

MARS is used in a time series setting. The simulation experiments identified the potential

for over parameterization by AIC that has been identified by Schwarz and others. The PC

and GCV" criteria also appeared to create unnecessarily large models (lack of parsimony)

when used for model selection of the Vatnsdalsa riverflow system. Thus in a ti-Ie series

setting the SC criterion is the recommended model selection criterion for use within MARS.

The application of MARS for nonlinear modeling of univariate and semi-multivariate

time series systems is a new and exciting methodology. However, there is still a need for
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additional investigation of many aspects of this application. Additional comments, questions

and areas for further research include;

I. It is important to note that as with any regression or time series modeling effort, one
can never be sure that one has all the relevant predictor variables. However, MARS
version 3.0 has been modified and Fortran programs written to permit analysis of
univariate and multivariate time series systems. The modifications include the ability
to select from one of several model selection criterion that have been proposed for use
in a time series setting. What other structural and methodological modifications are
needed to improve nonlinear modeling of time series using MARS?

2. As discussed in Chapter IV the MARS 3.0 program permits the use of categorical
variables such as wind velocity or circular wind direction. The use of categorical
variables in SMASTAR time series models has not been investigated. However, this
time series modification to MARS appears to provide an innovative approach for
including influential lagged categorical variables.

3. A constant source of concern when modeling time series data is that of variance
homogeneity and independence of the error term in the model

X, = ..-I -, X'P) +C.

Residual analysis of the yearly sunspot data model supported this assumption of
homeoscedascity and independence. If not, an initial attempt to overcome this would
be, for positive data, to use a log transformation as was done for the precipitation
data from the Vatnsdalsa riverflow system. However, there is no guarantee that this
would work; for instance if the data were generated by an ARCH model (Tong, 1990
pp. 116-117) then a simple transformation of the data, such as a log transformation,
would not work. Other questions involve normality of the errors.

4. MARS selects a model using exhaustive search and is a computer intensive method-
ology. Note that it is quite systematic and interactions and thresholds are selected
by the stepwise methodology. Also some of the predictor variables used as candidates
for the model may be rejected during the forward step of the MARS algorithm, i.e,
MARS uses subset selection of the available predictor variables. Tsay (1989) has de-
veloped procedures for threshold variable selection and a statistic to test threshold
values within the framework of TAR. These statistics, and graphical methods that
parallel the methods discussed for the Wolf sunspot numbers in Chapter II need to
be incorporated, in a fairly automatic way, in the MARS methodology for time series
analysis.

5. Can MARS be used to measure the degree of nonlinearity of a time series system?

6. An issue of concern in the general application of MARS is the method for determin-
ing the 'correct' number of degrees-of-freedom to charge for variable and threshold
value selection. This issue is even less clear across the lagged predictor variables of a
univariate or semi-multivariate time series system.
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7. As discussed in Chapter IV there are several model parameters that must be set to
initialize the MARS algorithm. It is preferable to set the parameters to be as unre-
strictive as possible and permit the model selection criterion and the data to determine
the final model form. In this regard, the guidance (obtained mostly by practical ex-
perience) offered by Friedman (1991) for setting the MARS model parameters in the
general setting appears very robust. However, the practical application of MARS to
time series has been limited to this investigation.

8. The use of ASTAR and SMASTAR models for modeling and analysis followed by the
simulation of complex, nonlinear systems is discussed in Lewis and Stevens (1990).
Frequently, individual inputs of complex global system models are the result of the
analysis of subcomponent systems. If the sub component systems are time series sys-
tems then the reduction of these nonlinear time series systems to a tractable model
form such as provided by ASTAR and SMASTAR time series models may enhance
the efficiency and accuracy of global system inputs.
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APPENDIX A. FORTRAN BATCH FILE FOR DEVELOPING
ASTAR AND SMASTAR TIME SERIES MODELS USING THE MARS

3.0 PROGRAM

QECHO OFF
This file is marstsa.bat. 01 July 1991

PC BATCH FILE FOR FOR INITIATING MARS3.Oa TIME SERIES RUNS FOR
MICROWAY NDP FORTRAN 2.1.4 UNDER DOS USING THE VZITEK
COPROCESSOR. CHANGE THE -N4 PARAMETER TO -N2 IN THE MARCL.BAT
FILE AND RECOMPILE THE MARS3.OA, MARSBLDa AND MARSDRVa FORTRAN
PROGRAMS TO USE THE INTEL OR CYRIX COPROCESSORS. Does not run
under Ver 2.0.6 of MICROWAY NDP FORTRAN, and has not been tried
under their later versions. At least Version 3 exists, maybe
Version 4.

J. STEVENS - L. URIBE - P.A.W. LEWIS. e-mail 1526PQNAVPGS.BITNET

THIS EXEC PREPARES THE INPUT REGRESSION MATRIX FOR FRIEDMAN'S
MARS3.Oa OUT OF 1, 2 OR 3 TIME SERIES USING THE KARSBLDa FORTRAN
PROGRAM. AFTER THAT IT CALLS THE MARSDRVa FORTRAN PROGRAM WHICH
PERFORMS THE MARS REGRESSION, FIRST COMPUTING ALL THE ARRAY
SPACE ALLOCATIONS NEEDED IN MAR3.Oa IN AN AUTOMATED WAY. THIS
RELIEVES THE USER FROM THE BURDEN OF SUCH GUESSWORK. THE ONLY
VALUE THAT MAY NEED ADJUSTMENT FROM THE USER IS ON THE 2ND LINE
OF MARSDRVa FORTRAN PROGRAM, WHERE THE SIZE FOR THE PARAMETER NV
APPEARS. THIS PARAMETER IS USED TO INCREASE OR REDUCE THE
AMOUNT OF MEMORY AVAILABLE FOR MAS3.0a. IN SUCH CASE ARSDRVa

NEEDS TO BE RECOMPILED PRIOR TO RUNNING THIS BATCH EXEC.

PROGRAM ARSBLDa PROMPTS FOR THE NAMES OF UP TO 3 TIME SERIES FILE
NAMES. THE 1ST ONE HAS THE TIME SERIES BEING PREDICTED, FROM LAGGED
VALUES OF ITSELF AND it must always be PRESENT. THE OTHER 2 TIME
SERIES ARE OPTIONAL PREDICTOR TIME SERIES. PRESS THE
<ENTER> KEY ALONE WHEN ANY OF THESE 2 TIME SERIES IS NOT USED.

OUTPUT RESULTS FROM MARS3.0a AND AN ADDITIONAL INTERACTIONS REPORT
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APPEARS ON FILE UNIT 06 (MARS3.OUT)

INPUT FILE(S) FORMAT: (See Definitions Below)
RECORD 1: N,P,MI,NK,NGCNGS,M,ICX,MSDFMSC

RECORD 2: LX(I), I-t,P
RECORD 3: LAG(I), IuliP
RECORDS 4-END: TIMES SERIES VALUES

ALL THE ABOVE INFORMATION IS ENTERED IN FREE FORMAT (JUST ONE OR
MORE SPACES BETWEEN VALUES). RECORD 2 AND RECORD 3 CAN BE MULTIPLE
RECORDS THEMSELVES WHEN P IS LARGE. THE ARRAYS CAN BE ENTERED
FOR EIMPLE 20 VALUES PER LINE.

PARAMETER DEFINITIONS:

N-NO. OF VALUES IN THE TIME SERIES (ALL 3 MUST BE EQUAL)
P-NO. OF PREDICTORS FROM THIS TIME SERIES
MI-MAX. NO OF INTERACTIONS
NK-MAX. NO. OF BASIS POINTS
NGC-NO. OF RASTER POINTS FOR PLOTTING (SET TO 0 FOR NO PLOT)
NGS-NO. OF R.P. ON EACH AXIS FOR PLOTS( " )
MuMODEL FLAG: 1-PLOT PIECEWISE LINEAR, 2-PLOT PIECEWISE CUBIC
ICXCONVEX HULL FLAG: O-PLOT SURFACE OVER ENTIRE RANGE OF ARGS.

>OPLOT SURF. OVER INSIDE CONVEX HULL
MS-NIN. SPAN (MIN NO. OBSERVATIONS BETWEEN KNOTS)
DFmNO. OF DEGREES OF FREEDOM
MSC-MODEL SELECTION CRITERIA (1-GCV, 2-AIC, 3-PC, 4-SC)

ENTER 0 FOR THOSE PARAMETER VALUES NOT APPLICABLE TO A GIVEN RUN.

LIsPREDICTOR VAR. FLAG: O-EXCLUDE VARIABLE FROM MODEL

1-ORDERABLE VARIABLE. NO RESTRICTION
2-ORDERABLE VAR. ADDITIVE. NO INTERACTS.
3-ORDERABLE VARIABLE LINEAR ONLY.

-1-CATEGORICAL VAR. NO RESTRICTION.
-2=CATEGORICAL VAR. ADDITIVE. NO INTERACTS

LAG-LAGS TO USE TO GENERATE PREDICTORS .?ROM THIS TIME SERIES.

TIME SERIES VALUES: THEY FOLLOW IN FREE FORMAT, AS MANY PER
RECORD AS DESIRED.

THE TOTAL NO. OF PREDICTORS IS THE SUM OF THE PREDICTORS FOR EACH
INPUT TIME SERIES.
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NOTE THAT ALL VALUES ON RECORD 1 OF THE 3 FILES MUST BE THE SAME
EXCEPT FOR P THE NUMBER OF PREDICTORS.

BREAK ON
WEHO On
SET SAVPTH=XPATH%
Save old Path, and below create one for the MARS run.
PATH c:\;c:\dos40l;D:\;d:\NDP20;d:\NDP20\MARSNEW
RUN386 MARSELDa
RUN386 KARSDRVa
PATH=%SAVPTH%

165



APPENDIX B. NDP FORTRAN PROGRAM FOR BUILDING THE
INPUT TO THE MARS 3.0 PROGRAM FOR ASIAR AND

SMASTAR TIME SERIES MODEL DEVELOPMENT

c This is the MARSBLD.F Fortran Program 01 July 1991

c *****************************************************************

c J. STEVENS - L. URIBE - P.A.W. LEWIS. e-mail 1526PONAVPGS.BITNET

C --- BUILD THE STD INPUT DATA FILE FOR MARSDRV WITH 1 TO 3 SERIES

C --- CALLS FOR UP TO 3 INPUT FILES, WHOSE FORM IS GIVEN IN THE
C - ARSTSA.BAT FILE WHICH CALLS THIS FILE.

C PARAMETER DEFINITIONS GIVEN IN THE KARSTSA.BAT FILE

INTEGER P, P1,P2,P3
PARDNETER(MXP 100 ,KXN=1O000)

INTEGER LXI(KXP) ,LX2(MXP) ,LX3(MIP), LGI(NXP) ,LG2(MXP) ,LG3(KXP)
REAL X(MIN,NZP),Y(MXI),W(NXJ) ,CIMXN) .20111),X3(1Ca)
CHARACTER*12 FN1,FN2,FN3, FOUT

DATA P1,P2,P3, NXX,NX2,NX3 /0,,0,0,00/

C
* DATA INPUT LINE 1 PARAMETERS -- NX,P,KI,NKNGC,NGSN,ICX,MS,DF,MSC

* LINE 2 -- LI
* LINE 3 -- DESIRED LAG VARIABLES. ORDERED
* REST OF FILE -- TIME SERIES

C

FOUT='KARS30a. DAT'

OPEN (10, FILEwFOUT)

C
WRITE(6,*) 'UNDER IBM CMS FILE NAMES MUST BEGIN WITH A /
WRITE(6,*) 'ENTER 1ST TIME SERIES FILE NAME (IN QUOTES):'
READ(S,,) FN1
OPEN (7 ,FILE=FN1,ERR-999)
CALL GETDATA(7, NXI, P1,NINKNGC,NGS,N,ICX,MS,DFLX1,LGI.11,

* MIN,KIPKSC)

C
WRITE(6,*) 'ENTER 2ND TIME SERIES FILE NAME (IN QUOTES):'
WRITE(6,*) 'IF NOT APPLICABLE JUST TYPE ONE SPACE IN QUOTES'
READ(5,*) FN2
IF(FN2.NE.'/' .AND. FN2.NE.' ') THEN

OPEN(8, FILE=FN2,ERR=999)
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CALL GETDATA(8, 1112, P2, I. I, I. 1,1, 1, 1. A,LX2,LG2,X2,
* MN,MXP,I)

ENDIF

WRITE(6 ,*) 'ENTER 3RD TIME SERIES FILE NAME (IN QUOTES):'
WRITE(6.*) 'IF NOT APPLICABLE JUST TYPE ONE SPACE IN QUOTES,
READ(S,*) FN3
IF(FN3.NE.'/' .AND. FN3.NE.' ') THEN

OPEN(9 ,FILEwFN3 ,ERR999)
CALL GETDATA(9, 113, P3, I. I. I. II, 1. I, A,LX3,LG3,X3,
* MINMIXPI)

END IF
if(nxx.eq.0 .or. nxx.ne.nx2 .and.nx2.gt.0 .or.

* nxx.ne.nx3 .and.nx3.gt.0) then

write(6,*) 'series are not of the same length' ,nxx,nx2,nx3
close (10)
stop

endif
C

12=0

if(p2.gt .0) 12inlg2(p2)

if(p3.gt.0) 13ulg3Cp3)
LP=MAI(LG1(P1), L2, L3)

N-NXX-LP
P*P14P24P3

C -- WEIGHTS W. RESPONSE Y BUILT FROM 1ST TIME SERIES
DO 100 II=1,N
W(II)M1.

100 CONTINUE
C
C -- BUILD THE REGRESSION X MATRIX

DO 101 11-1,11
DO 102 JJ-1,P1

X(11 ,JJ)wX1(IILP-LG1(JJ))
102 CONTINUE
101 CONTINUE
C

DO 103 IIwl,N
DO 104 JJ1I,P2

XCII ,JJ.Pl)-X2C11.LP-LG2 (33))
104 CONTINUE
103 CONTINUE
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C
DO 105 II=1,1

DO 106 JJ-1,P3
X(11 ,JJ.P1.P2)-X3(I4LP-LG3(J3))

106 CONTINUE
105 CONTINUE
C
C -- BUILD KARSDRV INPUT FILE

URITE(1O,114) NP1,P2,P3,I,NK,NGC,NGS,M,ICXNSDFMSC
WRITE(1O,111) (LX1CI),I-1.P1), (LX2(I),Iu1,P2), CLX3(I),I=1,P3)
WRITE(I0,116) (LGI(I) julP1), (LG2(I) ,I-In,P2) * (LG3(I) ,I-1,P3)
1IRITE(10,112) (W(I) ,Iu1,N)
DO 110 I= 1,1

WRITE(1O,112) C(J)J1PY(I)
110 CONTINUE

RETURN
999 CONTINUE

WRITE6*) 'FILE NOT FOUND FOR THIS TIME SERIES'
STOP

C
Ill FORMAT(2013)
112 FORNAT(14F10.5)
114 FORKAT(11I5,FS.1,IS)
116 FORM(01)

END
C

SUBROUTINE GETDATA(IUNXX,P,NI ,NKNGC,NGSN,ICXNS,DF,LX,LAGIX.
* NIN,NXP,KSC)

INTEGER LX(HXP),LAGCNXP). IUP
REAL XCKIN)
READ(IU.*,END.100) NIX,P,NINKNGCNGS,N,ICXNS,DFNSC
READCIU,*.END-888) (LX(J) ,3uiP)

READ(IU,*,END-888) (LAG(J) ,J-1,P)
READ(IU.*,END=888) (X(I), I-l,NXX)
CLOSE (IU)
DO 10 I=2,P
IF(LAG(I).LE.LAGCI-1)) THEN

VRITE(6 ,*) 'LAGS NOT IN ASCENDING ORDER OR DUPLICATE ,UNIT= , IU
STOP

ENDIF
10 CONTINUE

return
100 continue
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C --- empty file

RETURN
888 CONTINUE

VRITE (6, e) 'FILE INCOMPLETE FOR THIS TIME SERIES'
STOP
END
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APPENDIX C. NDP FORTRAN PROGRAM FOR EXECUTING
THE MARS 3.0 PROGRAM

C This is the MARSDRVA.F FORTRAN file 01 JULY 1991

C *******************************************************************

C J. STEVENS - L. URIBE - P.A.W. LEWIS. e-mail 1S26PONAVPGS.BITNET

C ******************************************************************

C DRIVER PROGRAM FOR RUNNING MARS 3.0. IT FIRST COMPUTES ALL THE ARRAY

c SPACE ALLOCATIONS, AND THEN RUNS THE MARS REGRESSION, USING THE

C INPUT PREPARED BY MARSBLDA.F WHICH IS CALLED BY MARSTSA.BAT.

PARAMETER (NV= 20000)
C SET UP WORKING STORAGE:

REAL V(NV)
INTEGER INTV(NV)
CHARACTER*8 FIN
EQUIVALENCE (V, INTV)

C
OPEN(10,FILE-'uazs30a.DAT' ,ERR-999)

OPEN (6,FILE='mars3Oa. out' ,ERR-999)

c lu FIN,'MARS3OA'

c lu OPEN(10,FILE-FIN II '.DAT',ERR999)
c lu OPEN(6, FILE-FIN // '.OUT')

WRITE(6,'(/," DRIVER FOR MARS 3.0. 1")')

C
C READ IN DATA:
C

READ(10,*,END,999) N,NP1,NP2,NP3,KI,NK,NGCNGS,M,ICX,MS,DFMSC

NP-NPI+NP2+NP3
WRITE(6,121) N,NPNP1,NP2,P3,MI,NK,NGC,NGS,MICX,MS,DF,MSC

121 FORMAT(I,' NO. OF OBSERVATIONS N: '.16.

* /,' TOTAL NO. OF PREDICTORS P: 1.16,

* I,' NO. OF PREDICTORS/TIME SERIES ',316,

* K,' MAX NO. OF INTERACTIONS MI: IJ6,

* /,' MAX NO OF BASIS FUNCTIONS NK: I6,

* I,' NO. OF RASTER POINTS FOR PLOTTING NGC: '16,

* I,' NO. OF R.P. FOR SURFACE ESTIMATES NGS:',I6,

* /,' MODEL FLAG (1-LINEAR, 2-CUBIC) M:'.16,

* /,' CONVEX HULL FLAG FOR PLOTS ICX',16,
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* ,'MINIMUM SPAN: MS',16.
* I'DEGREES OF FREEDOM DF: ,61

* ,'MODE SELECTION CRITERIA: '.16,
* I,' (1-GCV, 2-AIC, 3-PC, 4-SC) ' )

C
IF(NP.LE.O) RETURN
IPLIIl
IPX-IPLX.NP
IPY=IPXN*NP
IPW=IPYeN
IPLAG-IPW+I
IPIMnIPLAG.NP
IPSPwIPIK * 21*NK*(3*KI+8)

C -- SP ALLOCATED FOR KARS OR PLOT, WHICHEVER LARGEST
LSP=N*(Kkl(IK,2)+3)M&I(3*NS*NK4NP ,2*NP ,4*N).2*NP4NK
LSP-MAX(LSP, 4*NGS*NGS, NGC, 20N)
IPMMwIPSP + LSP
IF(IPMM .GT. NV) THEN

WRITE(6,*) ** MEMORY REQUIREM ENT S EXCEEDED FOR X ***

VRITE(6,*) '* MEMORY REQUESTED, AVAILABLE',IPMM,NV
STOP

.NDIF
C
C --- READ LX. WADLAGS

CALL READLXW(INTV(IPLX),V(IPU), lIMP, INTVCIPLAG))
C --- READ XAND Y

CALL READXY(V(IPX) ,V(IPY) , P)
C -- COMPUTE NMCVNTCV FROM THE DATA X

CALL COHPCVV(IPX).M,NP, INTV(IPLX), NMCVNTCV. INTV(IPIM))
C

LMM-MAX(l*NP.2*KAXCMI ,NMCV), 2*CMI.1), NMCV)
IPFM-IPMM + LMM
IPDP-IPFM + 3.NKs (5*MI.NMCV+6) 2*NP.ITCV
IPDP-FLOAT(IPDP)/8. + 1.
IPDP-8*IPDP
IPENDOIPDP*8*2*MAX(N*IK, CNK+1)* (NK.1) ).MAX( (NK*2)* (NMCV.3) ,4*NK)

C* VRITEC6,*) 'IP-LX,X,Y,W,IM,SPMMK,FMDP,END-',
C* *IPLX,IPXIPY,IPWIPIKIPSP,IPMM,IPFM,IPDP,IPEND

IFMPEND .GT. NV) THEN
WRITE(6,*) 's*MEMORY REQUIREMENTS EXCEEDED*.**'

VRITE(6,*) '**MEMORY REQUESTED, AVAILABLE-',IPEND,NV
STOP

EIDIF
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C
VRITE(6,*) 'LAGS AND LX FOR TIME SERIES 1'
WRITECO 122) (INTV(IPLAG-1.I) I=I ,NPI)
WRITE(6.122) (INTV(IPLX -1.1) .1iNl]Pi)
WRITE(6,*) 'LAGS AND LX FOR TIME SERIES 2'
WRITE(6,122) (INTV(IPLAG.NPI-1.I) ,I-1,NP2)
WRITE(6,I22) (INTV(IPLX *NPI-14I),I-i NP2)

WRITE(6,*) 'LAGS AND LX FOR TIME SERIES 3'
WRITE(6,122) (INTV(IPLAG.NP1.NP2-14I) 1.1 ,NP3)
WRITEC6,122) (INTYCIPLI *NP1.NP2-1.I),InlNP3)

122 FORKAT(20I5)
WRITE(6,*) 'START MARS. MEMORY NEEDED/AVAILABLE-'. IPEIDNY
WRITE(6,*) '----------------------------------------------------------------

C
CALL SETMS(MS)

CALL SETDF(DF)
CALL MARS(I,NPV(IPX) ,V(IPY) ,V(IPW),NK,MI,V(IPLX),V(IPFM),

* V(IPIM) ,V(IPSP) ,V(IPDP) ,V(IPHM), MSC)
C

CALL DISPFM(V(IPFM.1),V(IPDP),NK,KI, V(IPFM))
C
C CONSTRUCT PLOTS FOR INTERPRETING RESULTING MODEL:
C

IF(NGC.EQ.O AND. NGS.EQ.O) RETURN
C

IPCRV-IPDP
IPSRFuIPCRV +2*NGC*NK
IPEND-IPSRF + NGS*NGS*NK
IFMPEND .GT. NV) THEN

VRITE(6,*) '* MEMORY REQUIREMENTS EXCEEDED FOR PLOT ***

WRITEC6 A') '**MEMORY REQUESTED, AVAILABLE=' ,IPENDNV

STOP
ENDIF
CALL PLOT (M,V(IPX) ,V(IPFM) .V(IPIM),NGC,NGS,ICX.

* NC,V(IPCRV) ,NS,V(IPSR?) ,VCIPSP) ,V(IPMM))
C WRITE PLOTS TO OUTPUT FILES FOR PLOTTING WITH LOCAL GRAPHICS PACKAGE:
C

WRITE(6,*) 'PLOT -IPEND,IC,ISo',IPEND,NCNS
CALL WPLOT(V(IPCRV) ,V(IPSRP) ,NGC NC, IGSIS, FIN)
RETURN

999 CONTINUE
VRITE(6,*) 'ERROR OPENING INPUT FILE:',FIN
EN
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C
SUBROUTINE READXY CI YDIDNP)
REAL X(N,NP), Y(NP)
DO 1 1-1,1

READ(1,*) (X(I,J),J-i,NP),Y(I)
1 CONTINUE

END
C

SUBROUTINE COMPCV(IN,NP. LI. NMCVNTCV, WK)
REAL XCN,NP)
INTEGER LX(NP)
INTEGER WE (N)
NMCV-0
NTCV-O

C FIND MAX OVER ALL COLUMNS AND SUM OF ALL COLUMN VALUES
DO 30 J1l,NP
IF(LX(J).LT.0) THEN

NCAT-NUMCAT(XI3) ,N, WE)
ELSE

NCAT-O
ENDIF
NTCV-NTCV.NCAT
INMCYMAX CNMCV * NCAT)

30 CONTINUE
END

C
FUNCTION WUMCAT(VDN, WK)

C -- FIND NUMBER OF DISTINCT VALUES IN V
REAL V(U)
INTEGER WK(N)

C INITIALIZE DUPLIC. CONTROL MATRIX WE TO 0
DO 10 liN

WE (I) .0
10 CONTINUE

NUMCAT=0
DO 20 IliN

VALUY (I)

IF(WK(I).EQ.O) THEN
I1-1.1

DO 30 JwI1,N
IFCVAL.EQ.V(J)) WKCJ)1i

30 CONTINUE
NUMCAT-NUMCAT. I
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ENDIF
20 CONTINUE

END
C

SUBROUTINE READLXW(L,V, INPLAG)
C -- READ VALUES FOR LI AND U

INTEGER LI(NP),LAG(NP)
REAL 11(1)
READ(10,s') LI
READ(10,*) LAG

READ(1O,*) U
END

C
SUBROUTINE WPLOT(CRVSRFIGC,NC, NGSNS, FlAME)
REAL CRV(NGC,2,NC), SRFCNGSNGS,IS)
CEAP.ACTER.*8 FIAME
IF(NC.GT.O) THEN

OPEN(11 ,FILEwFNAME // l.CUR' ,FORM-'UNFORMATTED')
1IRITE(11) NGC,NCCRV

END IF
IF(NS.GT.0) THEN

OPEN(12,FILE-FNAME // '.SUR' ,FORMU'UNFORMATTED')
WRITE(12) NGSINS,SRF

ENDIF
END

C
SUBROUTINE DISPFX(FN,MMM,NKXI .CONST)

C ANALYSIS OF FM FOR MAWS 3.0
REAL FM(S,NK) ,MMM(NK,2MKI.1), VMII(1OO) ,MMD1(100) ,MMD2(100)
INTEGER OUT(100)

* WRITE OUT THE MODEL CONSTANT*
VRITE(6,*)

VRITE(6,112) 'MODEL CONSTANT - 'OIST
URITE(6,*)

* INITIALIZE MMM
DO 18 Iw1,NK
DUI 17 J=1,2
DO 16 Ku1,NIe1
Mmm(IJK)-100.

16 CONTINUE
17 CONTINUE
18 CONTINUE

C

174



'du-o
DO 20 1-11(1,-i
IF(FN(1,I).EQ.o) GOTO 20
IcISIc1,1
IC2=2
MMQ(IC1,2,1)-FM(1 ,I)
MNM(IC1 .,C2)-FM(2, I)
NNN(IC1.2, IC2)uFM(3, I)
DUN-FM(4,I)

19 IF(DUH.EQ.0) GOTO 21
IC2=IC2+1
HNI(IC1,1.1C2)-FM(2,DU,)
NNN(IC, ,2,1IC2) =FM(3 ,DUN)

4 DUN-FN(4 IDUN)

GOTO 19
21 KNN(IC1,1)uIC2-1
20 CONTINUE

C
DO 60 JaliICi
KENDaNM(3,1, 1)
DO 49 K-1,KEND
NMD(K)-ABSoo(j, 1,i(.1))
VKIN(K)-MMM(J,1.K,1)
NMD2(K)sUNNJ,2,K+l)
OUT (K) uK

49 CONTINUE
CALL PSORT(NMD1 OUT,1IKEND)
DO 48 K-1,KEND

NNM(J, 1 K.1) aVMIN(OUT (K))
NN(J,2,K+1)u-P=2(OUT(K))

48 CONTINUE
so CONTINUE

C
C -- PRINT INTERACTION VARIABLE REPORT

DO 100 IllNI
WRITE(6,*) '******

VRiTE(6.*) 'INTERACTION LEvEL:,,i
WRITE(6,*) '******

101 CONTINUE
DO 102 Jw1,34I
VMIN(J-999999.

102 CONTINUE

DO 110 Ju1,IC1
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KEND-NNNI(3,1,1)41
IF(KEND-1 .NE. I) GO TO 110
DO 120 K-2, KEND
IF(ABS(NHN(J.1,()).LT.VUN(K.1)) THEN

31.3
DO 130 KK=2, KEND
VNIN(KK-1)ABS(iJj, 1,1K))

130 CONTINUE
GO TO 110

ELSE
IF(ABS(KMN(J,1,K)).GT.VNIN(K-1)) GO TO 110

ENDIF
120 CONTINUE
110 CONTINUE

C
IF(VNIN(1) .NE.999999.) THEN

WRITE(6,1ll) I VARIABLES ',(KM(J1,1,1cK) ,KKw2,I1)
WRITE(6,112) 'COEFF AND KNOTS ',(MHN(J1,2,Iac),KKIcz,I+l)
VRITE(6,*)) 0

MM(J1,1,1)uMM(31,1,1) + MI
GO TO 101

ENDIF
100 CONTINUE

11 FR TRN , 5 ,7 10
112 FORMAT(A25F15.,7F103)

END
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APPENDIX D. MARS OUTPUT FOR ASTAR MODEL GRANITE2

DRIVER FOR MARS 3.X.

NO. OF OBSERVATIONS N: 4330
TOTAL NO. OF PREDICTORS P: 52
NO. OF PREDICTORS/TIME SERIES 50
MAX NO. OF INTERACTIONS MI: 3
MAX NO OF BASIS FUNCTIONS NK: 60
NO. OF RASTER POINTS FOR PLOTTING NGC: 0
NO. OF R.P. FOR SURFACE ESTIMATES NGS: 0
MODEL FLAG (lLINEAR, 2=CUBIC) M: 0
CONVEX HULL FLAG FOR PLOTS ICX 0
MINIMUM SPAN: MS so
DEGREES OF FREEDOM DF: 3.0
MODEL SELECTION CRITERIA (MSC): GCV
(1-GCV, 2-AIC, 3,PC, 4-SC)

LAGS AND LX FOR TIME SERIES 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 501 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1

LAGS AND LX FOR TIME SERIES 2
0

3
LAGS AND LX FOR TIME SERIES 3

0
3

START MARS. MEMORY NEEDED/AVAILABLE- 1150368 1200000
-------------------------------------

MARS MODELING, VERSION 3.5a (6/16/91)

INPUT PARAMETERS (SEE DOC.):
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N P NK MS MI DF IL FV IC
4330 52 60 50 3 3.000 0 0.000 0

PREDICTOR VARIABLE FLAGS:
VAR: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52

FLAG: I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1111111 1 1 3 3

ORDERABLE RESPONSE:

MIN N/4 N/2 3N/4 MAX

8.000 10.60 11.70 12.90 17.00

THERE ARE 52 ORDERABLE PREDICTOR VARIABLES.

VAR MIN N/4 N/2 3N/4 MAX

1 8.000 10.60 11.70 12.90 17.00

2 8.000 10.60 11.70 12.90 17.00

3 8.000 10.60 11.70 12.90 17.00

4 8.000 10.60 11.70 12.90 17.00

5 8.000 10.50 11.70 12.90 17.00
6 8.000 10.50 11.70 12.90 17.00

7 8.000 10.50 11.70 12.90 17.00

8 8.000 10.50 11.70 12.90 17.00

9 8.000 10.50 11.70 12.90 17.00

10 8.000 10.50 11.70 12.90 17.00

11 8.000 10.50 11.70 12.90 17.00

12 8.000 10.50 11.70 12.90 17.00

13 8.000 10.50 11.60 12.90 17.00

14 8.000 10.50 11.60 12.90 17.00
15 8.000 10.50 11.60 12.90 17.00

16 8.000 10.50 11.60 12.90 17.00

17 8.000 10.50 11.60 12.90 17.00

18 8.000 10.50 11.60 12.90 17.00

19 8.000 10.50 11.60 12.90 17.00

20 8.000 10.50 11.60 12.90 17.00

21 8.000 10.50 11.60 12.90 17.00

22 8.000 10.50 11.60 12.90 17.00

23 8.000 10.50 11.60 12.90 17.00

24 8.000 10.50 11.60 12.90 17.00

25 8.000 10.50 11.60 12.90 17.00
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26 8.000 10.50 11.60 12.90 17.00
27 8.000 10.50 11.60 12.90 17.00
28 8.000 10.50 11.60 12.90 17.00
29 8.000 10.50 11.60 12.90 17.00
30 8.000 10.50 11.60 12.90 17.00
31 8.000 10.50 11.60 12.90 17.00
32 8.000 10.50 11.60 12.90 17.00
33 8.000 10.50 11.60 12.90 17.00
34 8.000 10.50 11.60 12.90 17.00
35 8.000 10.50 11.60 12.80 17.00
36 8.000 10.50 11.60 12.80 17.00
37 8.000 10.50 11.60 12.80 17.00
38 8.000 10.50 11.60 12.80 17.00
39 8.000 10.50 11.60 12.80 17.00
40 8.000 10.50 11.60 12.80 17.00
41 8.000 10.50 11.60 12.80 17.00
42 8.000 10.50 11.60 12.80 17.00
43 8.000 10.50 11.60 12.80 17.00
44 8.000 10.50 11.60 12.80 17.00
45 8.000 10.50 11.60 12.80 17.00
46 8.000 10.50 11.60 12.80 17.00
47 8.000 10.50 11.60 12.80 17.00
48 8.000 10.50 11.60 12.80 17.00
49 8.000 10.50 11.60 12.80 17.00
50 8.000 10.50 11.60 12.80 17.00
51 -1.000 -0.7000 0.0000E+00 0.7000 1.000
52 -1.000 -0.7000 O.OOOOE+0 0.7000 1.000

FORWARD STEPWISE KNOT PLACEMENT:
BASFN(S) MSC #INDBSFNS #EFPRMS VARIABLE KNOT PARENT

0 2.6000 0.0 1.0
2 1 0.3031 2.0 5.9 1. 15.40 0.
3 0.2983 3.0 9.8 14. 8.000 0.
4 0.2972 4.0 13.8 2. 8.000 0.

6 5 0.2959 6.0 18.7 19. 9.100 4.
7 0.2944 7.0 22.6 51. -1.000 0.

9 8 0.2928 9.0 27.5 35. 10.00 5.
11 10 0.2923 11.0 32.5 17. 13.40 4.
13 12 0.2918 13.0 37.4 2. 14.90 2.
15 14 0.2916 15.0 42.3 3. 14.80 3.

16 0.2905 16.0 46.2 2. 8.000 14.
18 17 0.2901 18.0 51.2 2. 14.80 3.
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19 0.2892 19.0 55.1 36. 8.000 17.

21 20 0.2886 21.0 60.0 1. 14.90 11.

23 22 0.2883 23.0 64.9 7. 11.80 11.

25 24 0.2880 25.0 G9.8 1. 13.10 18.

27 26 0.2878 27.0 74.8 31. 13.40 10.

28 0.2874 28.0 78.7 26. 8.000 17.

30 29 0.2873 30.0 83.6 39. 15.00 18.

32 31 0.2871 32.0 88.5 36. 12.40 4.

34 33 0.2864 34.0 93.5 1. 14.30 32.

36 35 0.2862 36.0 98.4 3. 13.60 4.

38 37 0.2861 38.0 123.3 47. 11.80 31.

40 39 0.2860 40.0 138.2 35. 13.30 36.

42 41 0.2858 42.0 133.2 5. 12.80 31.

44 43 0.2857 44.0 148.1 1. 10.90 31.

46 45 0.2855 46.0 123.0 29. 10.10 15.

48 47 0.2852 48.0 137.9 20. 9.500 0.

50 49 0.2852 50.0 132.8 45. 13.00 35.

52 51 0.2851 52.0 147.8 44. 14.90 10.

5 53 0.2851 54.0 122.7 30. 10.20 32.

56 55 0.2849 56.0 137.6 35. 15.40 3.

58 57 0.2849 58.0 132.5 15. 15.00 13.

60 59 0.2848 60.0 147.5 25. 9.500 56.

FINAL MODEL AFTER BACKWARD STEPWISE ELIMINATION:

BSFN: 0 1 2 3 4 5

COEF: 15.778 1.2432 -1.0419E+00 O.OOOOE+00 -0.7511E-01 -0.1441E-01

BSFN: 6 7 8 9 10 11

COEF: -0.1587 -0.1026 0.4741E-02 -0.2700E-01 -0.2597E-01 -0.1784E-01

BSFN: 12 13 14 15 16 17

COEF: 0.3677E*00 O.OOOOE+00 -0.3553E+00 O.OOOOE400 0.4409E-01 -0.2146E+00

BSFN: 18 19 20 21 22 23

COEF: O.OOOOE+00 0.5120E-01 0.5373E-01 0.5596E-02 -0.7694E-02 -0.5888E-02

BSFN: 24 25 26 27 28 29

COEF: -0.1822E-01 O.OOOOE+00 0.1478E-01 0.1307E-01 -0.3072E-01 0.4366E-01

BSFN: 30 31 32 33 34 35

COEF: 0.OOOOE00 0.OOOOE+00 -0.2142E-01 -0.5539E-01 0.OOOOE+00 0.OOOOE+00
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BSFN: 36 37 38 39 40 41
COEF: O.OOOOE+00 O.O000E+00 -0.2932E-01 0.2563E-01 O.O000E+00 O.OOOOE+00

BSFN: 42 43 44 45 46 47

COEF: -0.2426E-01 -0.3663E-02 0.7473E-01 -0.2695E-02 -0.1881E-01 0.5118E-01

BSFN: 48 49 50 51 52 53
COEF: O.O000E+00 0.1456E-01 0.1286E-01 -0.4244E-01 u.OOOOE+00 0.5698E-02

BSFN: 54 55 56 57 58 59
COEF: 0.1640E-01 -0.4912E-01 0.1513E-01 0.5708E-01 0.1159E-02 O.OOOOE+00

BSFN: 60

COEF: 0.1651E-01

(PIECEWISE LINEAR) MSC = 0.2808 #EFPRMS = 115.7

ANOVA DECOMPOSITION ON 44 BASIS FUNCTIONS:
FUN. STD. DEV. -MSC #BSFNS #EFPRMS VARIABLE(S)
1 1.682 0.4456 2 5.8 1
2 0.1211 0.2812 1 2.6 2
3 0.7252E-01 0.2846 1 2.6 51
4 0.7980E-01 0.2814 1 2.6 20
5 0.1451 0.2813 2 5.2 2 19

6 0.7697E-01 0.2817 2 2.9 2 17

7 0.4403E-01 0.2815 1 5.8 1 2

8 0.3416 0.2820 1 2.9 3 14
9 0.1995 0.2813 1 2.9 2 14

10 0.7316E-01 0.2819 1 5.8 2 36
11 0.9518E-01 0.2828 2 2.9 14 35

12 0.2111 0.2825 2 2.9 2 19 35

13 0.3274 0.2817 1 5.8 2 3 14
14 0.2728 0.2822 1 2.9 2 14 36

15 0.8892E-01 0.2816 2 2.9 1 2 17
16 0.4887E-01 0.2814 2 5.8 2 7 17
17 0.3807E-01 0.2814 1 2.9 1 2 14
18 0.5182E-01 0.2810 2 2.9 2 17 31
19 0.1540 0.2813 1 5.8 2 14 26

20 0.3989E-01 0.2819 1 2.9 2 14 39

21 0.7842E-01 0.2822 3 2.9 1 2 36

22 0.2995E-01 0.2813 1 5.8 2 36 47

23 0.4398E-01 0.2816 1 2.9 2 3 35
24 0.4913E-01 0.2818 1 2.9 2 5 36
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25 0.6054E-01 0.2822 2 5.8 3 14 29
26 O.6108E-01 0.2816 2 2.9 2 3 45
27 0.3383E-0l 0.2814 1 2.9 2 17 44
28 0.4288E-01 0.2809 2 5.8 2 30 36
29 0.6748E-01 0.2813 2 2.9 1 2 15
30 0.2573E-01 0.2810 1 2.9 14 25 35

PIECEWISE CUBIC FIT ON 44 BASIS FUNCTIONS, 14SC .2867

-MSC FOR REMOVING EACH VARIABLE:

0.5545 0.2981 0.2838 0.2808 0.2818

0.2808 0.2814 0.2808 0.2808 0.2808
0.2808 0.2808 0.2808 0.2876 0.2813

0.2808 0.2832 0.2808 0.2822 0.2814

0.2808 0.2808 0.2808 0.2808 0.2810
0.2813 0.2808 0.2808 0.2823 0.2809
0.2810 0.2808 0.2808 0.2808 0.2837
0.2868 0.2808 0.2808 0.2819 0.2808
0.2808 0.2808 0.2808 0.2814 0.2816

0.2808 0.2813 0.2808 0.2808 0.2808
0.2846 0.2808

RELATIVE VARIABLE IMPORTANCE:
100.0 25.11 10.40 0.OOOOE+00 6.115

0.OOOOE.00 4.666 0.OOOOE.00 0.OOOOE+00 0.OOOOE400
0-OOOOE.00 0-OOOOE+00 0.OOOOE.00 15.77 4.220

0.OOOOE.00 9.337 0.OOOOE400 7.103 4.619
0-OOOOE+00 0.OOOOE.00 0.OOOOE.00 0.OOOOE+00 2.542

4.061 0.OOOOE.00 0.OOOOE+00 7.224 1.871

2.629 0.OOOOE+00 0.OOOOE.00 0.OOOOE400 10.26
14.83 0.OOOOE.00 0.OOOOE.00 6.397 0.OOOOE400

0.OOOOE+00 0.OOOOE+00 0.OOOOE400 4.539 5.375

0.OOOOE.00 4.024 0.OOOOE+00 0.OOOOE.00 0.OOOOE.00

11.75 0.0000.+00

---- ------------- MARS OUTPUT MODEL--------------

THE VARIABLE SIGN INDICATE A LEFT (- SIGN) OR RIGHT ( SIGN)
TRUNCATED SPLINE FUNCTION WITH THE INDICATED KNOT

MODEL CONSTANT I 1.778527
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INTERACTION LEVEL:

VARIABLES -1.000
COEFF AND KNOTS -1.041947 15.400

VARIABLES 1.000
COEFF AND KNOTS 1.124321 15.400

VARIABLES 2.000
COEFF AND KNOTS -0.075109 8.000

VARIABLES 20.000
COEFF AND KNOTS 0.051177 9.500

VARIABLES 51.000
COEFF AND KNOTS -0.102553 -1.000

INTERACTION LEVEL: 2

VARIABLES -1.000 2.000
COEFF AND KNOTS 0.367790 15.400 14.900

VARIABLES 2.000 14.000
COEFF AND KNOTS -0.214606 14.800 8.000

VARIABLES 2.000 -17.000
COEFF AND KNOTS -0.017842 8.000 13.400

VARIABLES 2.000 17.000
COEFF AND KNOTS -0.025969 8.000 13.400

VARIABLES 2.000 -19.000
COEFF AND KNOTS -0.158722 8.000 9.100

VARIABLES 2.000 19.000
COEFF AND KNOTS -0.014415 8.000 9.100

VARIABLES 2.000 -36.000
COEFF AND KNOTS -0.021417 8.000 12.400

VARIABLES 3.000 14.000
COEFF AND KNOTS -0.355389 14.800 8.000
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VARIABLES 14.000 -35.000
COEFF AND KNOTS 0.015131 8.000 15.400

VARIABLES 14.000 35.000
COEFF AND KNOTS -0.049118 8.000 15.400

INTERACTION LEVEL: 3

VARIABLES 1.000 -2.000 14.000
COEFF AND KNOTS -0.018219 13.100 14.800 8.000

VARIABLES -1.000 -2.000 -15.000
COEFF AND KNOTS 0.001159 15.400 14.900 15.000

VARIABLES -1.000 -2.000 15.000
COEFF AND KNOTS 0.057077 15.400 14.900 15.000

VARIABLES -1.000 2.000 -17.000
COEFF AND KNOTS 0.005596 14.900 8.000 13.400

VARIABLES 1.000 2.000 17.000
COEFF AND KIOTS 0.053733 14.900 8.000 13.400

VARIABLES -1.000 2.000 36.000
COEFF AND KNOTS 0.074733 10.900 8.000 12.400

VARIABLES 1.000 2.000 36.000
COEFF AND KNOTS -0.003663 10.900 8.000 12.400

VARIABLES 1.000 2.000 -36.000
COEFF AND KNOTS -0.055390 14.300 8.000 12.400

VARIABLES 2.000 3.000 14.000
COEFF AND KNOTS 0.044091 8.000 14.800 8.000

VARIABLES 2.000 -3.000 35.000
COEFF AND KNOTS 0.025631 8.000 13.600 13.300

VARIABLES 2.000 3.000 -45.000
COEFF AND KNOTS 0.012861 8.000 13.600 13.000
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VARIABLES 2.000 3.000 45.000
COEFF AND KNOTS 0.014562 8.000 13.600 13.000

VARIABLES 2.000 -5.000 36.000
COEFF AND KNOTS -0.024261 8.000 12.800 12.400

VARIABLES 2.000 -7.000 -17.000
COEFF AND KNOTS -0.005888 8.000 11.800 13.400

VARIABLES 2.000 7.000 -17.000
COEFF AND KNOTS -0.007694 8.000 11.800 13.400

VARIABLES 2.000 14.000 26.000
COEFF AND KNOTS -0.030715 8.000 8 000 8.000

VARIABLES 2.000 14.000 36.000
COEFF AND KNOTS 0.051202 8.000 8.000 8.000

VARIABLES 2.000 14.000 39.000
COEFF AND KNOTS 0.043657 8.000 8.000 15.000

VARIABLES 2.000 17.000 -31.000
COEFF AND KNOTS 0.013065 8.000 13.400 13.400

VARIABLES 2.000 17.000 31.000
COEFF AND KNOTS 0.014785 8.000 13.400 13.400

VARIABLES 2.000 17.000 44.000
COEFF AID KNOTS -0.042443 8.000 13.400 14.900

VARIABLES 2.000 19.000 -35.000
COEFF AND KNOTS -0.027002 8.000 9.100 10.000

VARIABLES 2.000 19.000 35.000
COEFF AND KNOTS 0.004741 8.000 9.100 10.000

VARIABLES 2.000 -30.000 -36.000
COEFF AND KNOTS 0.016398 8.000 10.200 12.400

VARIABLES 2.000 30.000 -36.000
COEFF AND KNOTS 0.005698 8.000 10.200 12.400

VARIABLES 2.000 36.000 -47.000
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COEFF AND KNOTS -0.029326 8.000 12.400 11.800

VARIABLES -3.000 14.000 -29.000
COEFF AND KNOTS -0.018812 14.800 8.000 10.100

VARIABLES -3.000 14.000 29.000
COEFF AND KNOTS -0.002695 14.800 8.000 10.100

VARIABLES 14.000 -25.000 -35.000
COEFF AND KNOTS 0.016511 8.000 9.500 15.400
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